• Title/Summary/Keyword: Naltrindole

Search Result 9, Processing Time 0.02 seconds

The Analgesic Effect and Its Opioidergic Mechanism of Electroacupuncture on Inflammatory Pain in the Type II Collagen-induced Arthritis Rats (전침(電鍼)의 collagen 유발(誘發) 관절염(關節炎)에 대한 진통(鎭痛) 효과(效果) 및 그 기전(機轉)에 관한 연구(硏究) - opioidergic mechanism을 중심으로 -)

  • Kim, Eun-Jung;Baek, Yong-Hyeon;Kang, Sung-Keel
    • Journal of Acupuncture Research
    • /
    • v.23 no.4
    • /
    • pp.149-162
    • /
    • 2006
  • Objectives : The aim of this study is to evaluate the analgesic effect of electroacupuncture on Jogsamni (ST36) in the collagen-induced arthritis rats and investigate the role played by opioid receptor subtypes $({\mu},\;{\delta},\;{\kappa})$ in the antinociceptive effect of electroacupuncture (EA) In the thermal hyper algesia test. Methods : Immunization of male Sprague-Dawley rats with bovine type H collagen emulsified in incomplete Freund's adjuvant, followed by booster injection 2 weeks later induced collagen-induced arthritis (CIA). The thermal hyperalgesia was evaluated weekly with tail flick latency (TFL). In the fourth week after first immunization, EA stimulation (2 Hz, 0.07 mA, 0.3 ms) was delivered into Jogsamni (5736) for 20 minutes. Analgesic effect was evaluated by using the tail flick latency (TFL) after intraperitoneal injection of normal saline, naloxone, naltrindole and nor-binaltorphimine respectively to CIA rats. Results : The results were as follows; 1. The TFL were gradually decreased in CIA as time elapsed after e immunization of arthrogenic collagen and the maximum value was reached between the third to fifth week. 2. EA stimulation on 5736 inhibited chronic inflammatory pain induced by CIA. 3. The analgesic effect of EA was inhibited by pretreatment of ${\mu}-receptor$ antagonist (naloxone),${\delta}-receptor$ antagonist (naltrindole) and ${\kappa}-receptor$ antagonist (nor-binaltorphimine) respectively. Conclusion : Electroacupuncture has an analgesic effect on the CIA rat and has an antinociception mediated by 8, 5, H receptors.

  • PDF

Roles of Opioid Receptor Subtype in the Spinal Antinociception of Selective Cyclooxygenase 2 Inhibitor

  • Choi, Cheol-Hun;Kim, Woong-Mo;Lee, Hyung-Gon;Jeong, Cheol-Won;Kim, Chang-Mo;Lee, Seong-Heon;Yoon, Myung-Ha
    • The Korean Journal of Pain
    • /
    • v.23 no.4
    • /
    • pp.236-241
    • /
    • 2010
  • Background: Selective inhibitors of cycloosygenase (COX)-2 are commonly used analgesics in various pain conditions. Although their actions are largely thought to be mediated by the blockade of prostaglandin (PG) biosynthesis, evidences suggesting endogenous opioid peptide link in spinal antinociception of COX inhibitor have been reported. We investigated the roles of opioid receptor subtypes in the spinal antionociception of selective COX-2 inhibitor. Methods: To examine the antionociception of a selective COX-2 inhibitor, DUP-697 was delivered through an intrathecal catheter, 10 minutes before the formalin test in male Sprague-Dawley rats. Then, the effect of intrathecal pretreatment with CTOP, naltrindole and GNTI, which are ${\mu}$, $\delta$, and k opioid receptor antagonist, respectively, on the analgesia induced by DUP-697 was assessed. Results: Intrathecal DUP-697 reduced the flinching response evoked by formalin injection during phase 1 and 2 Naltrindole and GNTI attenuated the antinociceptive effect of intrathecal DUP-697 during both phases of the formalin test, CTOP reversed the antinociception of DUP-697 during phase 2, but not during phase 1, Conclusions: Intrathecal DUP-697, a selective COX-2 inhibitor, effectively relieved inflammatory pain in rats. The $\delta$ and $\kappa$ opioid receptors are involved in the activity of COX-2 inhibitor on the facilitated state as well as acute pain at the spinal level, whereas the ${\mu}$ opioid receptor is related only to facilitated pain.

Analgesic effects of eucalyptus essential oil in mice

  • Lee, Ganggeun;Park, Junbum;Kim, Min Sun;Seol, Geun Hee;Min, Sun Seek
    • The Korean Journal of Pain
    • /
    • v.32 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • Background: The use of aroma oils dates back to at least 3000 B.C., where it was applied to mummify corpses and treat the wounds of soldiers. Since the 1920s, the term "aromatherapy" has been used for fragrance therapy with essential oils. The purpose of this study was to determine whether the essential oil of Eucalyptus (EOE) affects pain pathways in various pain conditions and motor coordination. Methods: Mice were subjected to inhalation or intraperitoneal injection of EOE, and its analgesic effects were assessed by conducting formalin, thermal plantar, and acetic acid tests; the effects of EOE on motor coordination were evaluated using a rotarod test. To determine the analgesic mechanism, 5'-guanidinonaltrindole (${\kappa}$-opioid antagonist, 0.3 mg/kg), naltrindole (${\delta}$-opioid antagonist, 5 mg/kg), glibenclamide (${\delta}$-opioid antagonist, 2 mg/kg), and naloxone (${\mu}$-opioid antagonist, 4, 8, 12 mg/kg) were injected intraperitoneally. Results: EOE showed an analgesic effect against visceral pain caused by acetic acid (EOE, 45 mg/kg); however, no analgesic effect was observed against thermal nociceptive pain. Moreover, it was demonstrated that EOE did not have an effect on motor coordination. In addition, an anti-inflammatory effect was observed during the formalin test. Conclusions: EOE, which is associated with the ${\mu}$-opioid pain pathway, showed potential effects against somatic, inflammatory, and visceral pain and could be a potential therapeutic agent for pain.

Regulation of $[^3H]Norepinephrine$ Release by Opioids in Human Cerebral Cortex

  • Woo, Ran-Sook;Shin, Byoung-Soo;Kim, Chul-Jin;Shin, Min-Soo;Jeong, Min-Suk;Zhao, Rong-Jie;Kim, Kee-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.1-3
    • /
    • 2003
  • To investigate the receptors mediating the regulation of norepinephrine (NE) release in human cerebral cortex slices, we examined the effects of opioid agonists for ${\mu}$-, ${\delta}$-, and ${\kappa}$-receptors on the high potassium (15 mM)-evoked release of [$^3H$]NE. [$^3H$]NE release induced by high potassium was calcium-dependent and tetrodotoxin-sensitive. [$D-Pen^2$, $D-Pen^5$]enkephalin (DPDPE) and deltorphin II (Delt II) inhibited the stimulated release of norepinephrine in a dose-dependent manner. However, Tyr-D-Ala-Gly-(Me)Phe-Gly-ol and U69,593 did not influence the NE release. Inhibitory effect of DPDPE and Delt-II was antagonized by naloxone, naltrindole, 7-benzylidenaltrexone and naltriben. These results suggest that both ${\delta}_1$ and ${\delta}_2$ receptors are involved in regulation of NE release in human cerebral cortex.

Hair Growth Promotion by δ-Opioid Receptor Activation

  • Zheng, Mei;Choi, Nahyun;Balboni, Gianfranco;Xia, Ying;Sung, Jong-Hyuk
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.643-649
    • /
    • 2021
  • Literature has revealed that the delta opioid receptor (DOR) exhibited diverse pharmacological effects on neuron and skin. In the present study, we have investigated whether the activation of DOR has hair-growth promotion effects. Compared with other opioid receptor, DOR was highly expressed in epidermal component of hair follicle in human and rodents. The expression of DOR was high in the anagen phase, but it was low in the catagen and telogen phases during mouse hair cycle. Topical application of UFP-512, a specific DOR agonist, significantly accelerated the induction of the anagen in C3H mice. Topical application of UFP-512 also increased the hair length in hair organ cultures and promoted the proliferation and the migration of outer root sheath (ORS) cells. Similarly, pharmacological inhibition of DOR by naltrindole significantly inhibited the anagen transition process and decreased hair length in hair organ cultures. Thus, we further examined whether Wnt/β-catenin pathway was related to the effects of DOR on hair growth. We found that Wnt/β-catenin pathway was activated by UFP-512 and siRNA for β-catenin attenuated the UFP-512 induced proliferation and migration of ORS cells. Collectively, result established that DOR was involved in hair cycle regulation, and that DOR agonists such as UFP-512 should be developed for novel hair-loss treatment.

Effects of opioid and non-opioid antagonists, pH and enzymes on Corchorus olitorius antinociception in mice

  • Zakaria Zainul Amiruddin;Neelendran M;Pubalan S;Sulaiman MR;Fatimah CA
    • Advances in Traditional Medicine
    • /
    • v.6 no.3
    • /
    • pp.186-195
    • /
    • 2006
  • The present study was carried out to determine the involvement of opioid and non-opioid receptor and the effect of pH and enzymes on the recently reported antinociceptive activity of aqueous extract of Corchorus olitorius (AECO) leaves using the abdominal constriction test. The extract was prepared by soaking the dried powdered leaves of Corchorus (C.) olitorius in distilled water overnight, and the supernatant obtained was considered as a stock solution with 100% concentration/ strength. The extract, administered subcutaneously in the concentrations/ strength of 10, 50 and 100%, was found to show a significant concentration-independent antinociception. The 50% concentration AECO were further used to study on the above mentioned parameters. The extract exhibited: significant (P < 0.05) decreased in activity when pre-treated (s.c.) against 10 mg/kg naloxonazine, bicuculine (10 mg/kg), phenoxybenzamine (10 mg/kg), 10 mg/kg pindolol, and 5 mg/kg mecamylamme, but not 10 mg/kg naltrindole, 10 mg/kg atropine, respectively; significant (P < 0.05) decreased in activity after pre-treatment against 10% a-amylase, but not 1 % protease or 10% lipase and; significant (P < 0.05) decreased in activity after exposure to alkaline condition (pH between 9 and 13) while maintaining the activity at acidic condition, respectively. The C. olitorius leaves antinociception, which involved, at least in part, activation of $\mu-opioid,\;\alpha-and\;\beta-adrenergic$, and nicotinic receptors, was found to decrease under alkaline condition and in the presence of $\alpha-amylase$.

Study on Peripheral Mechanism and Opioid Receptors Implicated in Electroacupunture-induced Inbibition of Chronic Pain (만성통증을 억제하는 전침효과의 말초성 기전과 아편양물질수용기에 관한 연구)

  • 신홍기;이서은;박동석
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.108-117
    • /
    • 2003
  • Objective : The central opioid mechanism of acupuncture analgesia has been fairly well documented in acute behavioral experiments, but little electrophysiological study has been performed on the peripheral mechanism and subtypes of opioid receptors responsible for acupuncture-induced antinociception in chronic animal models. In the present electrophysiological experiment, we studied the peripheral mechanism and opioid receptor subtypes which Were implicated in electroacupuncture-induced antinociception in the rat with chronic inflammatory and neurogenic pain. Methods : In the rat with complete Freund's adjuvant-induced inflammation and spinal nerve injury, dorsal horn cell responses to afferent C fiber stimulation were recorded before and after electroacupuncture (EA) stimulation applied to the contralateral Zusanli point for 30 minutes. Also studied Were the effects of specific opioid receptor antagonists and naloxone methiodide, which can not cross the blood-brain barrier, on EA-induced inhibitory action. Results : EA-induced inhibitory action was significantly attenuated by naloxone methiodide, suggesting that EA-induced inhibition was mediated through peripheral mechanism. Pretreatment, but not posttreatment of naltrexone and spinal application significantly blocked EA-induced inhibitory actions. In inflammatory and neurogenic pain models, ${\mu}-$ and ${\delta}-opioid$ receptor antagonists (${\beta}-funaltrexamine$ & naltrindole) significantly reduced EA-induced inhibitory action, but ${\kappa}-opioid$ receptor antagonist had weak inhibitory effect on EA-induced antinociception. Conclusion : These results suggest that 2Hz EA-stimulation induced antinoeiceptive action is mediated through peripheral as well as central mechanism, and mainly through ${\mu}-$ and ${\delta}-opioid$ receptors.

  • PDF

Medial prefrontal cortex nitric oxide modulates neuropathic pain behavior through mu opioid receptors in rats

  • Raisian, Dorsa;Erfanparast, Amir;Tamaddonfard, Esmaeal;Soltanalinejad-Taghiabad, Farhad
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Background: The neocortex, including the medial prefrontal cortex (mPFC), contains many neurons expressing nitric oxide synthase (NOS). In addition, increasing evidence shows that the nitric oxide (NO) and opioid systems interact in the brain. However, there have been no studies on the interaction of the opioid and NO systems in the mPFC. The objective of this study was to investigate the effects of administrating L-arginine (L-Arg, a precursor of NO) and N(gamma)-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOS) into the mPFC for neuropathic pain in rats. Also, we used selective opioid receptor antagonists to clarify the possible participation of the opioid mechanism. Methods: Complete transection of the peroneal and tibial branches of the sciatic nerve was applied to induce neuropathic pain, and seven days later, the mPFC was cannulated bilaterally. The paw withdrawal threshold fifty percent (50% PWT) was recorded on the 14th day. Results: Microinjection of L-Arg (2.87, 11.5 and 45.92 nmol per 0.25 µL) increased 50% PWT. L-NAME (17.15 nmol per 0.25 µL) and naloxonazine (an antagonist of mu opioid receptors, 1.54 nmol per 0.25 µL) inhibited anti-allodynia induced by L-Arg (45.92 nmol per 0.25 µL). Naltrindole (a delta opioid receptor antagonist, 2.45 nmol per 0.25 µL) and nor-binaltorphimine (a kappa opioid receptor antagonist, 1.36 nmol per 0.25 µL) were unable to prevent L-Arg (45.92 nmol per 0.25 µL)-induced antiallodynia. Conclusions: Our results indicate that the NO system in the mPFC regulates neuropathic pain. Mu opioid receptors of this area might participate in pain relief caused by L-Arg.

Effects of [D-$Pen^2$, D-$Pen^5$]-enkephalin on the Neuronal Activity of Medial Vestibular Nuclear Neurons

  • Jang, Su-Jeong;Jeong, Han-Seong;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.199-205
    • /
    • 2009
  • This study was designed to investigate direct effects of [D-$Pen^2$, D-$Pen^5$]-enkephalin, a $\delta$-opioid receptor agonist on the neuronal activity of medial vestibular nuclear (MVN) neurons by whole-cell configuration patch clamp experiments. The spike frequency of MVN neuron was increased to $9.50{\pm}0.55$ (P<0.05) and $10.56{\pm}0.66$ (P<0.05) by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin from the control level of $8.05{\pm}0.55$ spikes/sec, respectively (n=18). The resting membrane potential of the neurons was increased to $-37.86{\pm}0.92$ and $-36.97{\pm}0.97$ (P<0.05) from $-38.74{\pm}1.13\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. The amplitude of afterhyperpolarization was decreased to $23.78{\pm}0.65$ and $21.67{\pm}0.89$ (P<0.05) from $23.73{\pm}0.53\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. The spike width was changed to $2.22{\pm}0.08$ and $2.24{\pm}0.07$ from $2.20{\pm}0.08\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. After pretreatment of naltrindole, a highly selective 8-opioid receptor antagonist, [D-$Pen^2$, D-$Pen^5$]-enkephalin did not change firing rate, resting membrane potential, afterhyperpolarization amplitude, and spike width of MVN neurons. The above experimental results suggest that [D-$Pen^2$, D-$Pen^5$]-enkephalin increases the neuronal activity of MVN neurons via inhibition of calcium-dependent potassium currents underlying the afterhyperpolarization.

  • PDF