• Title/Summary/Keyword: Nakdong-River estuary

Search Result 268, Processing Time 0.025 seconds

Variations of Physical Oceanographic Environment Caused by Opening and Closing the Floodgate in Nakdong Estuary (수문개폐에 따른 낙동강 하구둑 하류부의 해양물리환경변화)

  • Kim Ki-Cheol;Yang Han-Soeb;Kim Cha-Kyum;Moon Chang-Ho;Jang Sung-Tae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.49-59
    • /
    • 1999
  • Nakdong Estuary is complex water system, where sea water and fresh water meet each other. After construction of Nakdong River Barrier, the flow pattern and mixing processes have been changed. Variations of physical oceanographic environment in Nakdong Estuary due to opening and closing the floodgate of Nakdong River Barrier are analysed focusing the movement of outflows from the barrier. Surveys and analysis were made for the three cases. 1. Ordinary times (opening and closing the gate by the tidal period) 2. A period of flood time (opening the gate) 3. A period of water shortage (closing the gate).

  • PDF

Grain size distribution of sediment around Jinudo in Nakdong River Estuary (낙동강 진우도 주변 해역의 모래입도 분포)

  • Yoo, Chang-Ill;Yoon, Han-Sam;Lee, In-Cheol;Ryu, Cheoung-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.441-444
    • /
    • 2006
  • Nakdong river estuary is located at south-eastern coast if the Korea. Especially, Complicating topography change is generated by interaction of much sediment, wave and tide. This study is investigated into observation data of grading size distribution in the post and surface sediment characteristics is investigated into grading size analysis using sieve analysis in Nakong river estuary. As a result, mean diameter of surface sediment is distributed to front of shoal as a size with 0.1~0.2 mm and mean diameter of the last generated shoal is about 0.2~0.3 mm.

  • PDF

Spatial and Temporal Variability of Residual Current and Salinity Distribution according to Freshwater Discharge during Monsoon in Nakdong River Estuary (낙동강 하구역의 홍수기 방류에 의한 수로별 유속 잔차 및 염분 분포)

  • Song, Jin Il;Yoon, Byung Il;Kim, Jong-Wook;Lim, Chae Wook;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.184-195
    • /
    • 2014
  • After building the dyke in Nakdong River Estuary, mixing of freshwater inflow to ocean and seawater to upstream is controlled by operating the sluice gates. Mixing and convergence of seawater and freshwater by opening the sluice gates, have a major impact on the circulation of seawater in the Nakdong River Estuary. Field measurement was carried out to study the characteristics of the estuary flow and environment of each channel of the Nakdong River Estuary. Vertical salinity distribution and residual current is different from each channel by the river discharge and topographic changes.

Diffusive Estimation of the Conservative Contaminant in River Estuary (하구의 보존성 오염물질 확산 예측)

  • Yoon, Jong-Su;Shin, Chan-Ki;Hwang, Dong-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.3
    • /
    • pp.47-57
    • /
    • 2008
  • This study was predicted the diffusion of the conservative contaminant using a two-dimensional hydraulic model. The research area is upper basin of Jakwang river where the possibility where the pollutant of vast quantity will flow is high. Using SMS model, we calculated two-dimensional stream flow. And using this result, predicted the conduct of the conservative contaminant by pollutant transfer diffusion calculation. And also we predicted flow and contaminant diffusion in the near estuary by constructed guide bank. As a result of study, pollutant effect scope of the conservative contaminant was predicted with the fact that will broaden because of interception by guide bank. As discharge was increased from the Jakwang river, The diffusion of the pollutant is accelerated, also the effect scope increases.

Measurements of $^{224}Ra\;and\;^{223}Ra$ in the Nakdong River estuary and the South Sea of Korea

  • Hwang, Dong-Woon;Kim, Gue-Buem;Yang, Han-Soeb
    • Journal of the korean society of oceanography
    • /
    • v.38 no.2
    • /
    • pp.80-86
    • /
    • 2003
  • The horizontal distributions of $^{224}Ra$ (half life=3.4 days) and $^{223}Ra$ (half life=11.3 days) were measured in surface seawaters of the Nakdong River estuary and the South Sea of Korea in April and October 2002. In order to determine these short-lived Ra isotopes, we used a delayed coincidence counter which is much more rapid and accurate than traditional methods. In an estuarine mixing zone (salinity, ~l6 ppt), the activities of $^{224}Ra\;and\;^{223}Ra$ were much greater than what would be expected from a mixture of freshwater and seawater in the Nakdong River estuary. This excess Ra may be a result of Ra desorption from fresh sediments originating from the river upstream. However, in the more open areas of the Nakdong River estuary (salinity>30 ppt) and the South Sea of Korea, $^{224}Ra\;and\;^{^{223}Ra$ activities decreased exponentially as a function of distance offshore. Using the decrease of $^{223}Ra$ with distance offshore in the South Sea of Korea, we estimated the apparent horizontal eddy diffusivities. The apparent eddy diffusion coefficients in South Sea of Korea are calculated to be approximately $3500-8000\;\textrm{m}^2/sec$.

A Study on characteristics of sediment transfer in Nakdong estuary (낙동강 하구의 퇴적물 이동특성에 관한 연구)

  • Jeon Yong-ho;Lee In-Cheol;Ryu Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.161-166
    • /
    • 2004
  • Research for deposits in Nakdong eatuary that research about Nakdong eatuary's sediment flows out in Nakdong-kang so far had been progressed but research about deposits that is flowed in open sea is insufficient. Observed Nakdong eatuary's characteristic of sediment transfer through observation during the second during Buteo 20 days on February 6, 2004 in this research Resuspension bed load Flux appeared high the first result St.4 point and St.5 point. St.4 branch had much bed load amount that is flowed in the east, and bed load that St.5 branch is flowed in the south appeared much Tendency such as the first showed in the second result, but compare with the first result and St.5 branch had much bed load that is transfer in end. Bed load that is transfer in observation result Nakdong river was less. As this, can know that amount of sediment that is transfer in open sea more than deposits that is transfer in Nakdong river is much Is expected to exert effect that deposits that is transfer in open sea is high in Nakdong estuary's topography change. Specially, observation result is expected that Nakdong estuary's deposition tendency becomes Jinwoodo southern and Shinho southern.

  • PDF

The numerical simulation on variation of phytoplankton maximum region in the estuary of Nakdong river -II. The numerical simulation on variation of phytoplankton maximum region- (낙동강 하구지역의 식물플랑크톤 극대역 변동에 관한 수직시뮬레이션 -II. 식물플랑크톤 극대역 변동의 수치시뮬레이션-)

  • 이대인
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.375-384
    • /
    • 2000
  • It is very important to interprete and simulate the variation of phytoplankton maximum region for the prediction and control of red tide. This study was composed of two parts first the hydrodynamic simulation such as residual current and salinity diffusion and second the ecological simulation such as phytoplankton distribution according to freshwater discharge and pollutant loads. Without the Nakdong river discharge residual current was stagnated in inner side of this estuary and surface distribution of salinity was over 25psu. On the contrary with summer mean discharge freshwater stretched very far outward and some waters flowed into Chinhae Bay through the Kadok channel and low salinity extended over coastal sea and salinity front occurred. From the result of contributed physical process to phytioplankton biomass the accumulation was occurred at the west part of this estuary and the Kadok channel with the Nakdong river discharge. When more increased input discharge the accumulation band was transported to outer side of this estuary. The frequently outbreak of red tide in this area is caused by accumulation of physical processes. The phytoplankton maximum region located inner side of this estuary without the Nakdong river discharge and with mean discharge of winter but it was moved to outer side when mean discharge of the Nakdong river was increased. The variation of input concentration from the land loads was not largely influenced on phytoplankton biomass and location of maximum region. When discharge was increased phytoplankton maximum region was transferred to inner side of the Kadok channel. ON the other hand when discharge was decreased phytoplankton maximum region was transferred to inner side of this estuary and chlorophyll a contents increased to over 20$\mu\textrm{g}$/L Therefore if any other conditions are favorable for growth of phytoplankton. decreas of discharge causes to increase of possibility of red tide outbreak.

  • PDF

Effects of Meteorological and Oceanographic Properties on Variability of Laver Production at Nakdong River Estuary, South Coast of Korea (낙동강 하구 해양환경 및 기상 요인이 김P(orphyra yezoensis) 생산량 변화에 미치는 영향)

  • Kwon, Jung-No;Shim, JeongHee;Lee, Sang Yong;Cho, Jin Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.868-877
    • /
    • 2013
  • To understand the effects of marine environmental and meteorological parameters on laver Porphyra yezoensis production at Nakdong River Estuary, we analyzed marine environmental (water temperature, salinity, nutrients, etc.) and meteorological properties (air temperature, wind speed, precipitation, sunshine hours) with yearly and monthly variations in laver production over 10 years (2003-2013). Air and water temperature, wind speed, sunshine hours and precipitation were major factors affecting yearly variability in laver production at the Nakdong River Estuary. Lower air and water temperatures together with higher levels of nutrients and sunshine and stronger wind speeds resulted in higher laver harvests. Salinity and nitrogen did not show clear correlations with laver production, mainly due to the plentiful supply of nitrogen from river discharge and the low frequency of environmental measurements, which resulted in low statistical confidence. However, environmental factors affecting monthly laver production were related to the life cycle (culturing stage) of Porphyra yezoensis and were somewhat different from factors affecting annual laver production. In November, a young laver needs lower water temperatures for rapid growth, while a mature laver needs much stronger winds and more sunshine, as well as lower temperatures for massive production and effective photosynthesis, mostly in December and January. However, in spring (March), more stable environments with fewer fluctuations in air temperature are needed to sustain the production of newly deployed culture-nets ($2^{nd}$ time culture). These results indicate that rapid changes in weather and marine environments caused by global climate change will negatively affect laver production and, thus, to sustain the yield of and predict future variability in laver production at the Nakdong River estuary, environmental variation around laver culturing farms needs to be monitored with high resolution in space and time.

Morphological Change in Seabed Surrounding Jinwoo-Island Due to Construction of New Busan Port - Qualitative Evaluation through Numerical Simulation (부산신항 건설이 진우도 주변 해저지형 변화에 미치는 영향 - 수치실험을 통한 정성적 평가)

  • Hong, Namseeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.192-201
    • /
    • 2018
  • In this study, a qualitative evaluation of the morphological changes in the seabed surrounding Jinwoo-Island due to the construction of the new Busan port were determined through a numerical simulation. Various scenarios for the discharge of the Nakdong river estuary dam and construction stage of the new Busan port were established and utilized for an indirect and qualitative investigation through simulation using the numerical model implemented in this study. It was concluded through a qualitative study that the morphological changes in the seabed surrounding Jinwoo-Island were typical estuary seabed changes due to the discharge of the Nakdong river estuary dam and waves from the open sea. The effects from the construction of the new Busan port were relatively small.

Mutagenicity of River Water of Nakdong River Estuary in Korea (낙동강 하구수의 변이원성에 대한 연구)

  • ;;Ryuich Otsu
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.35-39
    • /
    • 2001
  • The mutagenicity of the river water of Nakdong river estuary was determined by Ames test using the blue rayon suspension method. Samples were collected from 10 sites in the estuary once in each season of 1998. The samples collected from the sites where industrial waste discharge on May were mutagenic, but the other samples were not mutagenic. The sample collected from the site 1 located near the industrial area (Hadan-dong) were highly mutagenic in the TA98 with (+S9) and without (-S9) mix as well as in the TA100 with (+S9) and without (-S9) S9 mix, suggesting that the river water of this site is polluted by direct and indirect mutagens of frame-shift type as well as direct and indirect mutagens of base-replacement type. The positive mutagenicity, although relatively low, was also detected in TA98 with (+S9) and without (-S9) S9 mix in the extract of the site 4 near the industrial area(Jangrim-dong), suggesting that the primary mutation type is frame-shift. The negative mutagenicity from July to December at the sites (1-4) near the industrial area seems to be affected by the low economic growth rate in 1998 in Korea. On the other hand, the negative mutagenicity in all extracts collected from the sites 5-10 near the residential area where living sewage discharge, suggests that the river water was not polluted by mutagens.

  • PDF