• Title/Summary/Keyword: Najran

Search Result 14, Processing Time 0.018 seconds

Effect of polypropylene and glass fiber on properties of lightweight concrete exposed to high temperature

  • Abdulnour Ali Jazem Ghanim;Mohamed Amin;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa;Yara Elsakhawy
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.179-190
    • /
    • 2023
  • The effect of glass fibres (GF) and polypropylene fibres (PPF) on the fresh properties and mechanical properties of lightweight concrete (LWC) exposed to high temperatures is investigated in this study. In this study, fifteen LWC mixtures were carried out in three different groups reinforced with PPF or GF fibers by 0%, 0.2%, and 0.4% by volume of concrete. The first group included aluminum powder (AP) as an air agent at 0.03% with the normal weight coarse aggregate (NWCA) by 100% of the weight of coarse aggregate. In the second group, 33% of the NWCA weight was replaced by lightweight coarse aggregate (LWCA). In the third group, 67% of the NWCA weight was replaced by LWCA. The slump, unit weight, Compressive strength (CS), tensile strength (TS), and flexural strength (FS) were examined. For two hours, the CS and FS were subjected to elevated temperatures of 200℃, 400℃, and 600℃, in addition to microstructure analysis of concrete. In comparison to the reference mixture, the fresh properties and bulk density of LWC decreased with the use of the air agent or the replacement of 67% of the NWCA with LWCA. As a result of the fiber addition, both the slump test and the bulk density decreased. The addition of fibers increased the CS; the highest CS was 38.5 MPa when 0.4% GF was added, compared to 28.9 MPa for the reference mixture at the test age of 28 days. In addition, flexural and TS increased by 53% and 38%, respectively, for 0.4% GF mixes. As well as, adding 0.4% GF to LWC maintained a higher CS than other mixtures.

Effects of the location and size of web openings on shear behavior of clamped-clamped reinforced concrete beams

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Ibrahim Y. Hakeem;Ilker Kalkan
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.251-264
    • /
    • 2024
  • The present study pertains to the effects of variations in the location and size of drilled web openings on the behavior of fixed-fixed reinforced concrete (RC) beams. For this purpose, a reference bending beam with a transverse opening in each half span was tested to failure. Later, the same beam was modeled and analyzed with the help of finite element software using ABAQUS. Upon achieving close agreement between the experimental and numerical results, the location and size of the web opening were altered to uncover the effects of these factors on the shear strength and load-deflection behavior of RC beams. The experimental failure mode of the tested beam and the numerical results were also verified by theoretical calculations. In numerical analysis, when compared to the reference (D0) specimen, if the distance of the opening center from the support is 0 or h or 2h, reduction in load-bearing capacity of 1.5%-22.8% or 2.0%-11.3% or is 4.1%-40.7%. In other words, both the numerical analyses and theoretical calculations indicated that the beam behavior shifted from shear-controlled to flexure-controlled as the openings approached the supports. Furthermore, the deformation capacities, energy absorption values, and the ductilities of the beams with different opening diameters also increased with the decreasing distance of the opening from supports. Web compression failure was shown to be the predominant mode of failure of beams with large diameters due to the lack of sufficient material in the diagonal compression strut of the beam. The present study indicated that transverse openings with diameters, not exceeding about 1/3 of the entire beam depth, do not cause the premature shear failure of RC beams. Finally, shear damage should be prevented by placing special reinforcements in the areas where such gaps are opened.

Saudi Experts Consensus on Diagnosis and Management of Pediatric Functional Constipation

  • Alshehri, Dhafer B.;Sindi, Haifa Hasan;AlMusalami, Ibrahim Mohamod;Rozi, Ibrahim Hosamuddin;Shagrani, Mohamed;Kamal, Naglaa M.;Alahmadi, Najat Saeid;Alfuraikh, Samia Saud;Vandenplas, Yvan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.3
    • /
    • pp.163-179
    • /
    • 2022
  • Although functional gastrointestinal disorders (FGIDs) are very common in pediatric patients, there is a scarcity of published epidemiologic data, characteristics, and management patterns from Saudi Arabia, which is the 2nd largest Arabic country in terms of area and the 6th largest Arabic country in terms of population, with 10% of its population aged <5 years. Functional constipation (FC) is an FGID that has shown a rising prevalence among Saudi infants and children in the last few years, which urges us to update our clinical practices. Nine pediatric consultants attended two advisory board meetings to discuss and address current challenges, provide solutions, and reach a Saudi national consensus for the management of pediatric constipation. The pediatric consultants agreed that pediatricians should pay attention to any alarming signs (red flags) found during history taking or physical examinations. They also agreed that the Rome IV criteria are the gold standard for the diagnosis of pediatric FC. Different therapeutic options are available for pediatric patients with FC. Dietary treatment is recommended for infants with constipation for up to six months of age. When non-pharmacological interventions fail to improve FC symptoms, pharmacological treatment with laxatives is indicated. First, the treatment is aimed at disimpaction to remove fecal masses. This is achieved by administering a high dose of oral polyethylene glycol (PEG) or lactulose for a few days. Subsequently, maintenance therapy with PEG should be initiated to prevent the re-accumulation of feces. In addition to PEG, several other options may be used, such as Mg-rich formulas or stimulant laxatives. However, rectal enemas and suppositories are usually reserved for cases that require acute pain relief. In contrast, infant formulas that contain prebiotics or probiotics have not been shown to be effective in infant constipation, while the use of partially hydrolyzed formula is inconclusive. These clinical practice recommendations are intended to be adopted by pediatricians and primary care physicians across Saudi Arabia.

Use of waste steel fibers from CNC scraps in shear-deficient reinforced concrete beams

  • Ilker Kalkan;Yasin Onuralp Ozkilic;Ceyhun Aksoylu;Md Azree Othuman Mydin;Carlos Humberto Martins;Ibrahim Y. Hakeem;Ercan Isik;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.245-255
    • /
    • 2023
  • The present paper summarizes the results of an experimental program on the influence of using waste lathe scraps in the concrete mixture on the shear behavior of RC beams with different amounts of shear reinforcement. Three different volumetric ratios (1, 2 and %3) for the scraps and three different stirrup spacings (160, 200 and 270 mm) were adopted in the tests. The shear span-to-depth ratios of the beams were 2.67 and the stirrup spacing exceeded the maximum spacing limit in the building codes to unfold the contribution of lathe scraps to the shear resistances of shear-deficient beams, subject to shear-dominated failure (shear-tension). The experiments depicted that the lathe scraps have a pronounced contribution to the shear strength and load-deflection behavior of RC beams with widely-spaced stirrups. Namely, with the addition of 1%, 2% and 3% waste lathe scraps, the load-bearing capacity escalated by 9.1%, 21.8% and 32.8%, respectively, compared to the reference beam. On the other hand, the contribution of the lathe scraps to the load capacity decreases with decreasing stirrup spacing, since the closely-spaced stirrups bear the shear stresses and render the contribution of the scraps to shear resistance insignificant. The load capacity, deformation ductility index (DDI) and modulus of toughness (MOT) values of the beams were shown to increase with the volumetric fraction of scraps if the stirrups are spaced at about two times the beam depth. For the specimens with a stirrup spacing of about the beam depth, the scraps were found to have no considerable contribution to the load capacity and the deformation capacity beyond the ultimate load. In other words, for lathe scrap contents of 1-3%, the DDI values increased by 5-23% and the MOT values by 63.5-165% with respect to the reference beam with a stirrup spacing of 270 mm. The influence of the lathe scraps to the DDI and MOT values were rather limited and even sometimes negative for the stirrup spacing values of 160 and 200 mm.