• Title/Summary/Keyword: Naive bayes

Search Result 238, Processing Time 0.024 seconds

Microblog User Geolocation by Extracting Local Words Based on Word Clustering and Wrapper Feature Selection

  • Tian, Hechan;Liu, Fenlin;Luo, Xiangyang;Zhang, Fan;Qiao, Yaqiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3972-3988
    • /
    • 2020
  • Existing methods always rely on statistical features to extract local words for microblog user geolocation. There are many non-local words in extracted words, which makes geolocation accuracy lower. Considering the statistical and semantic features of local words, this paper proposes a microblog user geolocation method by extracting local words based on word clustering and wrapper feature selection. First, ordinary words without positional indications are initially filtered based on statistical features. Second, a word clustering algorithm based on word vectors is proposed. The remaining semantically similar words are clustered together based on the distance of word vectors with semantic meanings. Next, a wrapper feature selection algorithm based on sequential backward subset search is proposed. The cluster subset with the best geolocation effect is selected. Words in selected cluster subset are extracted as local words. Finally, the Naive Bayes classifier is trained based on local words to geolocate the microblog user. The proposed method is validated based on two different types of microblog data - Twitter and Weibo. The results show that the proposed method outperforms existing two typical methods based on statistical features in terms of accuracy, precision, recall, and F1-score.

A Novel Feature Selection Method in the Categorization of Imbalanced Textual Data

  • Pouramini, Jafar;Minaei-Bidgoli, Behrouze;Esmaeili, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3725-3748
    • /
    • 2018
  • Text data distribution is often imbalanced. Imbalanced data is one of the challenges in text classification, as it leads to the loss of performance of classifiers. Many studies have been conducted so far in this regard. The proposed solutions are divided into several general categories, include sampling-based and algorithm-based methods. In recent studies, feature selection has also been considered as one of the solutions for the imbalance problem. In this paper, a novel one-sided feature selection known as probabilistic feature selection (PFS) was presented for imbalanced text classification. The PFS is a probabilistic method that is calculated using feature distribution. Compared to the similar methods, the PFS has more parameters. In order to evaluate the performance of the proposed method, the feature selection methods including Gini, MI, FAST and DFS were implemented. To assess the proposed method, the decision tree classifications such as C4.5 and Naive Bayes were used. The results of tests on Reuters-21875 and WebKB figures per F-measure suggested that the proposed feature selection has significantly improved the performance of the classifiers.

POSE-VIWEPOINT ADAPTIVE OBJECT TRACKING VIA ONLINE LEARNING APPROACH

  • Mariappan, Vinayagam;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.20-28
    • /
    • 2015
  • In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.

Fault Diagnosis of Drone Using Machine Learning (머신러닝을 이용한 드론의 고장진단에 관한 연구)

  • Park, Soo-Hyun;Do, Jae-Seok;Choi, Seong-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.28-34
    • /
    • 2021
  • The Fourth Industrial Revolution has led to the development of drones for commercial and private applications. Therefore, the malfunction of drones has become a prominent problem. Failure mode and effect analysis was used in this study to analyze the primary cause of drone failure, and blade breakage was observed to have the highest frequency of failure. This was tested using a vibration sensor placed on drones along the breakage length of the blades. The data exhibited a significant increase in vibration within the drone body for blade fracture length. Principal component analysis was used to reduce the data dimension and classify the state with machine learning algorithms such as support vector machine, k-nearest neighbor, Gaussian naive Bayes, and random forest. The performance of machine learning was higher than 0.95 for the four algorithms in terms of accuracy, precision, recall, and f1-score. A follow-up study on failure prediction will be conducted based on the results of fault diagnosis.

Identifying Mobile Owner based on Authorship Attribution using WhatsApp Conversation

  • Almezaini, Badr Mohammd;Khan, Muhammad Asif
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.317-323
    • /
    • 2021
  • Social media is increasingly becoming a part of our daily life for communicating each other. There are various tools and applications for communication and therefore, identity theft is a common issue among users of such application. A new style of identity theft occurs when cybercriminals break into WhatsApp account, pretend as real friends and demand money or blackmail emotionally. In order to prevent from such issues, data mining can be used for text classification (TC) in analysis authorship attribution (AA) to recognize original sender of the message. Arabic is one of the most spoken languages around the world with different variants. In this research, we built a machine learning model for mining and analyzing the Arabic messages to identify the author of the messages in Saudi dialect. Many points would be addressed regarding authorship attribution mining and analysis: collect Arabic messages in the Saudi dialect, filtration of the messages' tokens. The classification would use a cross-validation technique and different machine-learning algorithms (Naïve Baye, Support Vector Machine). Results of average accuracy for Naïve Baye and Support Vector Machine have been presented and suggestions for future work have been presented.

An enhanced feature selection filter for classification of microarray cancer data

  • Mazumder, Dilwar Hussain;Veilumuthu, Ramachandran
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.358-370
    • /
    • 2019
  • The main aim of this study is to select the optimal set of genes from microarray cancer datasets that contribute to the prediction of specific cancer types. This study proposes the enhancement of the feature selection filter algorithm based on Joe's normalized mutual information and its use for gene selection. The proposed algorithm is implemented and evaluated on seven benchmark microarray cancer datasets, namely, central nervous system, leukemia (binary), leukemia (3 class), leukemia (4 class), lymphoma, mixed lineage leukemia, and small round blue cell tumor, using five well-known classifiers, including the naive Bayes, radial basis function network, instance-based classifier, decision-based table, and decision tree. An average increase in the prediction accuracy of 5.1% is observed on all seven datasets averaged over all five classifiers. The average reduction in training time is 2.86 seconds. The performance of the proposed method is also compared with those of three other popular mutual information-based feature selection filters, namely, information gain, gain ratio, and symmetric uncertainty. The results are impressive when all five classifiers are used on all the datasets.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Generate Optimal Number of Features in Mobile Malware Classification using Venn Diagram Intersection

  • Ismail, Najiahtul Syafiqah;Yusof, Robiah Binti;MA, Faiza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.389-396
    • /
    • 2022
  • Smartphones are growing more susceptible as technology develops because they contain sensitive data that offers a severe security risk if it falls into the wrong hands. The Android OS includes permissions as a crucial component for safeguarding user privacy and confidentiality. On the other hand, mobile malware continues to struggle with permission misuse. Although permission-based detection is frequently utilized, the significant false alarm rates brought on by the permission-based issue are thought to make it inadequate. The present detection method has a high incidence of false alarms, which reduces its ability to identify permission-based attacks. By using permission features with intent, this research attempted to improve permission-based detection. However, it creates an excessive number of features and increases the likelihood of false alarms. In order to generate the optimal number of features created and boost the quality of features chosen, this research developed an intersection feature approach. Performance was assessed using metrics including accuracy, TPR, TNR, and FPR. The most important characteristics were chosen using the Correlation Feature Selection, and the malicious program was categorized using SVM and naive Bayes. The Intersection Feature Technique, according to the findings, reduces characteristics from 486 to 17, has a 97 percent accuracy rate, and produces 0.1 percent false alarms.

Study of oversampling algorithms for soil classifications by field velocity resistivity probe

  • Lee, Jong-Sub;Park, Junghee;Kim, Jongchan;Yoon, Hyung-Koo
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.247-258
    • /
    • 2022
  • A field velocity resistivity probe (FVRP) can measure compressional waves, shear waves and electrical resistivity in boreholes. The objective of this study is to perform the soil classification through a machine learning technique through elastic wave velocity and electrical resistivity measured by FVRP. Field and laboratory tests are performed, and the measured values are used as input variables to classify silt sand, sand, silty clay, and clay-sand mixture layers. The accuracy of k-nearest neighbors (KNN), naive Bayes (NB), random forest (RF), and support vector machine (SVM), selected to perform classification and optimize the hyperparameters, is evaluated. The accuracies are calculated as 0.76, 0.91, 0.94, and 0.88 for KNN, NB, RF, and SVM algorithms, respectively. To increase the amount of data at each soil layer, the synthetic minority oversampling technique (SMOTE) and conditional tabular generative adversarial network (CTGAN) are applied to overcome imbalance in the dataset. The CTGAN provides improved accuracy in the KNN, NB, RF and SVM algorithms. The results demonstrate that the measured values by FVRP can classify soil layers through three kinds of data with machine learning algorithms.

Implementation of Probabilistic Predictive Artificial Intelligence for Remote Diagnosis in Aging Society (고령화 사회 원격 진료를 위한 확률론적 예측인공지능 연구)

  • Jeong, Jae-Seung;Ju, Hyunsu
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.6
    • /
    • pp.3-13
    • /
    • 2020
  • 저출산 고령화 사회로의 진입은 대한민국뿐만 아니라 전 세계적으로 많은 사회 문제를 야기하고 있다. 그 중에서 고령 인구 증가로 인한 의료 수요 증가와 이를 뒷받침 할 의료인력 부족은 곧 다가올 사회문제이다. 4차 산업 혁명으로 인해 다양한 사회문제에 대한 혁신적인 해법들이 제시되고 있는데, 본 기고문에서는 다가올 고령화 사회에서 의료인력 부족 등에 의한 해결법으로 원격의료 지원을 위한 인공지능 활용을 다루고자 한다. 병 진단 및 예측을 위한 여러 가지 인공지능 알고리즘은 이미 많이 개발 되어 있으나, 일반적으로 딥러닝에 많이 쓰이는 인공신경망 구조인 합성곱 뉴럴네트워크(convolution neural network)나 기존 퍼셉트론(perceptron) 구조에서 벗어나 확률론적 인공신경망 중에 하나인 베이지안 뉴럴네트워크(Bayesian neural network)를 다루고자 한다. 그중에서 연산효율적이며 뉴로모픽 하드웨어로 구현 가능성이 높고 실제 진단 예측(diagnosis prediction) 문제 해결에 강점을 보이는 알고리즘으로써 naive Bayes classifer를 활용한 연구를 소개하고자 한다.