• 제목/요약/키워드: Naive Bayes classification

검색결과 125건 처리시간 0.03초

A Novel Posterior Probability Estimation Method for Multi-label Naive Bayes Classification

  • Kim, Hae-Cheon;Lee, Jaesung
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.1-7
    • /
    • 2018
  • A multi-label classification is to find multiple labels associated with the input pattern. Multi-label classification can be achieved by extending conventional single-label classification. Common extension techniques are known as Binary relevance, Label powerset, and Classifier chains. However, most of the extended multi-label naive bayes classifier has not been able to accurately estimate posterior probabilities because it does not reflect the label dependency. And the remaining extended multi-label naive bayes classifier has a problem that it is unstable to estimate posterior probability according to the label selection order. To estimate posterior probability well, we propose a new posterior probability estimation method that reflects the probability between all labels and labels efficiently. The proposed method reflects the correlation between labels. And we have confirmed through experiments that the extended multi-label naive bayes classifier using the proposed method has higher accuracy then the existing multi-label naive bayes classifiers.

Naive Bayes classifiers boosted by sufficient dimension reduction: applications to top-k classification

  • Yang, Su Hyeong;Shin, Seung Jun;Sung, Wooseok;Lee, Choon Won
    • Communications for Statistical Applications and Methods
    • /
    • 제29권5호
    • /
    • pp.603-614
    • /
    • 2022
  • The naive Bayes classifier is one of the most straightforward classification tools and directly estimates the class probability. However, because it relies on the independent assumption of the predictor, which is rarely satisfied in real-world problems, its application is limited in practice. In this article, we propose employing sufficient dimension reduction (SDR) to substantially improve the performance of the naive Bayes classifier, which is often deteriorated when the number of predictors is not restrictively small. This is not surprising as SDR reduces the predictor dimension without sacrificing classification information, and predictors in the reduced space are constructed to be uncorrelated. Therefore, SDR leads the naive Bayes to no longer be naive. We applied the proposed naive Bayes classifier after SDR to build a recommendation system for the eyewear-frames based on customers' face shape, demonstrating its utility in the top-k classification problem.

다항시행접근 단순 베이지안 문서분류기의 개선 (Improving Multinomial Naive Bayes Text Classifier)

  • 김상범;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.259-267
    • /
    • 2003
  • 단순 베이지언 분류모형은 구현이 간단하고 효율적이기 때문에 실용적으로 사용하기에 적합하다. 그러나 이 분류모형은 많은 기계학습 도메인에서 우수한 성능을 보임에도 불구하고 문서분류에 적용되었을 경우에는 그 성능이 매우 낮은 것으로 알려져왔다. 본 논문에서는 단순 베이지언 분류모형중 가장 성능이 우수한 것으로 알려진 다항 시행접근 단순 베이지언 분류모형을 개선하는 세가지 방법을 제안한다. 첫 번째는 범주에 대한 단어의 확률추정방법을 문서모델에 기반하여 개선하는 것이고, 두 번째는 문서의 길이에 따라 범주와의 관련성이 선형적으로 증가하는 것을 억제하기 위해 길이에 대한 정규화를 수행하는 것이며, 마지막으로 범주판정에 중요한 역할을 하는 단어들의 영향력을 높여주기 위하여 상호정보가중 단순 베이지언 분류방법을 사용하는 것이다. 제안하는 방법들은 문서분류기의 성능 평가를 위한 벤치마크 문서집합인 Reuters21578과 20Newsgroup에서 기존의 방범에 비해 상당한 성능향상을 가져옴을 알 수 있었다.

Naive Bayes 문서 분류기를 위한 점진적 학습 모델 연구 (A Study on Incremental Learning Model for Naive Bayes Text Classifier)

  • 김제욱;김한준;이상구
    • 정보기술과데이타베이스저널
    • /
    • 제8권1호
    • /
    • pp.95-104
    • /
    • 2001
  • In the text classification domain, labeling the training documents is an expensive process because it requires human expertise and is a tedious, time-consuming task. Therefore, it is important to reduce the manual labeling of training documents while improving the text classifier. Selective sampling, a form of active learning, reduces the number of training documents that needs to be labeled by examining the unlabeled documents and selecting the most informative ones for manual labeling. We apply this methodology to Naive Bayes, a text classifier renowned as a successful method in text classification. One of the most important issues in selective sampling is to determine the criterion when selecting the training documents from the large pool of unlabeled documents. In this paper, we propose two measures that would determine this criterion : the Mean Absolute Deviation (MAD) and the entropy measure. The experimental results, using Renters 21578 corpus, show that this proposed learning method improves Naive Bayes text classifier more than the existing ones.

  • PDF

포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류 (Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers)

  • 홍진혁;민준기;조웅근;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.886-895
    • /
    • 2006
  • 지문분류는 사전에 정의된 클래스로 입력된 지문을 분류하여 자동지문인식 시스템에서 비교해야할 지문의 수를 줄여준다. 지지벡터기계(support vector machine; SVM)는 패턴인식 분야에서 널리 사용되고 있을 뿐만 아니라 지문분류에서도 높은 성능을 보이고 있다. SVM은 이진클래스 분류기이기 때문에 다중클래스 문제인 지문분류를 위해서 적절한 분류기 생성과 결합 기법이 필요하며, 본 논문에서는 일대다(one-vs-all; OVA) 방식으로 구성된 SVM을 naive Bayes(NB) 분류기를 이용하여 동적으로 구성하는 분류방법을 제안한다. 지문분류에서 대표적으로 사용되는 특징인 FingerCode와 지문의 구조적 특징인 특이점과 의사융선을 사용하여 OVA SVM과 NB 분류기를 학습하고, 포섭구조의 분류기를 구성하여 효과적인 지문분류를 수행한다. NIST-4 데이타베이스에 제안하는 방법을 적용하여 5클래스 분류에 대해서 90.8%의 높은 분류율을 획득하였으며, OVA 전략의 SVM을 다중클래스 분류문제에 적용할 때 발생하는 동점문제를 효과적으로 처리하였다.

Naive Bayes 분석기법을 이용한 유방암 진단 (Breast Cancer Diagnosis using Naive Bayes Analysis Techniques)

  • 박나영;김장일;정용규
    • 서비스연구
    • /
    • 제3권1호
    • /
    • pp.87-93
    • /
    • 2013
  • 선진국형 질병으로만 알려져 있던 유방암이 우리나라 현대 여성들에게 발병률이 꾸준히 증가하고 있다. 유방암은 보통 50대 이상의 여성에서 발병하는 병으로 알려져 있지만 우리나라의 경우 40대의 서양보다 젊은 여성들에게 발병률이 꾸준히 증가하고 있다. 따라서 우리나라 성인여성을 기준으로 유방암에 대한 정확한 진단을 할 수 있는 매뉴얼을 구축하는 것이 시급한 과제이다. 본 논문에서는 데이터마이닝기법을 이용하여 유방암을 예측하는 방법을 제시한다. 데이터마이닝이란 데이터베이스 내에 숨어 있는 일정한 패턴이나 변수들 간의 관계를 정교한 분석모형을 이용하여 쉽게 드러나지 않은 유용한 정보를 찾아내는 과정을 말한다. 실험을 통하여 Deicion Tree와 Naive Bayes 분석기법을 사용하여 유방암을 진단하는 분석기법을 비교분석을 하였다. Deicison Tree는 C4.5 알고리즘을 적용하여 분석하였고 두 알고리즘이 상당히 좋은 분류 정확도를 나타냈다. 그러나 Naive Bayes 분류방법이 Decision Tree방법보다 더 상회하는 정확도를 보였고 이는 의료데이터의 특성에 많이 기인한다고 볼 수 있다.

  • PDF

나이브 베이스에서의 커널 밀도 측정과 상호 정보량 (Mutual Information in Naive Bayes with Kernel Density Estimation)

  • 샹총량;유샹루;강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.86-88
    • /
    • 2014
  • 나이브 베이스가 가지는 가정은 실세계 데이터를 분류함에 있어 해로운 효과를 보이곤 한다. 이러한 가정을 완화하기 위해, 우리는 Naive Bayes Mutual Information Attribute Weighting with Smooth Kernel Density Estimation (NBMIKDE) 접근 방법을 소개한다. NBMIKDE는 애트리뷰트를 위한 스무드 커널과 상호 정보량 측정값을 기반으로 하는 어트리뷰트 가중치 기법을 조합한 것이다.

  • PDF

자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정 (Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification)

  • 김영남
    • 대한상한금궤의학회지
    • /
    • 제14권1호
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF

Levenshtein 거리를 이용한 영화평 감성 분류 (Sentiment Classification of Movie Reviews using Levenshtein Distance)

  • 안광모;김윤석;김영훈;서영훈
    • 디지털콘텐츠학회 논문지
    • /
    • 제14권4호
    • /
    • pp.581-587
    • /
    • 2013
  • 본 논문에서는 레빈쉬타인 거리(Levenshtein distance)를 이용한 감성 분류 방법을 제안한다. 감성 자질에 레빈쉬타인 거리를 적용하여 BOW(Back-Of-Word)를 생성하고 이를 학습 자질로 사용한다. 학습 모델은 지지벡터기계(support vector machines, SVMs)와 나이브 베이즈(Naive Bayes)를 이용하였다. 실험 데이터로는 다음 영화 사이트로부터 영화평을 수집하였으며, 수집한 영화평은 총 2,385건이다. 수집된 영화평으로부터 감성 어휘를 수작업을 통해 수집하였으며 총 778개 어휘가 선별되었다. 실험에서는 감성 어휘에 레빈쉬타인 거리를 적용한 BOW를 이용하여 기계학습을 수행하였으며, 10-fold-cross validation 방식으로 분류기의 성능을 평가하였다. 평가 결과는 레빈쉬타인 거리가 3일 때 다항 나이브 베이즈(Muitinomial Naive Bayes) 분류기에서 85.46%의 가장 높은 정확도를 보였다. 실험을 통하여 본 논문에서 제안하는 방법이 문서 내의 철자 오류에 대해서도 분류 성능에 영향을 적게 받음을 알 수 있었다.

베이지언 문서분류시스템을 위한 능동적 학습 기반의 학습문서집합 구성방법 (An Active Learning-based Method for Composing Training Document Set in Bayesian Text Classification Systems)

  • 김제욱;김한준;이상구
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권12호
    • /
    • pp.966-978
    • /
    • 2002
  • 기계학습 기법을 이용한 문서분류시스템의 정확도를 결정하는 요인 중 가장 중요한 것은 학습문서 집합의 선택과 그것의 구성방법이다. 학습문서집합 선택의 문제란 임의의 문서공간에서 보다 정보량이 큰 적은 양의 문서집합을 골라서 학습문서로 채택하는 것을 말한다. 이렇게 선택한 학습문서집합을 재구성하여 보다 정확도가 높은 문서분류함수를 만드는 것이 학습문서집합 구성방법의 문제이다. 전자의 문제를 해결하는 대표적인 알고리즘이 능동적 학습(active learning) 알고리즘이고, 후자의 경우는 부스팅(boosting) 알고리즘이다. 본 논문에서는 이 두 알고리즘을 Naive Bayes 문서분류 알고리즘에 적응해보고, 이때 생기는 여러 가지 특징들을 분석하여 새로운 학습문서집합 구성방법인 AdaBUS 알고리즘을 제안한다. 이 알고리즘은 능동적 학습 알고리즘의 아이디어를 이용하여 최종 문서분류함수룰 만들기 위해 임시로 만든 여러 임시 문서분류함수(weak hypothesis)들 간의 변이(variance)를 높였다. 이를 통해 부스팅 알고리즘이 효과적으로 구동되기 위해 필요한 핵심 개념인 교란(perturbation)의 효과를 실현하여 문서분류의 정확도를 높일 수 있었다. Router-21578 문서집합을 이용한 경험적 실험을 통해, AdaBUS 알고리즘이 기존의 알고리즘에 비해 Naive Bayes 알고리즘에 기반한 문서분류시스템의 정확도를 보다 크게 향상시킨다는 사실을 입증한다.