무마커 증강현실 시스템은 실내나 옥외 환경에서 자연 물체를 인식하고 매칭하는 기능이 필수적이다. 본 논문에서는 비주얼 서술자와 코드북을 사용하여 특징을 추출하고 자연 물체를 인식하는 기법을 제안한다. 증강현실 응용은 동작 속도와 실시간 성능에 민감하기 때문에, 본 연구에서는 멀티 클래스의 자연 물체 인식에 초점을 두었으며 분류와 특징 추출 시간을 줄이는 것을 포함한다. 훈련과 테스트 과정에서 자연 물체로부터 특징을 추출하기 위해 SIFT와 SURF을 각각 사용하고 그들의 성능을 비교한다. 또한, 클러스터링 알고리즘을 이용하여 다차원의 특징 벡터들로부터 비주얼 코드북을 생성하고 나이브 베이즈 분류기를 이용해 물체를 인식한다.
Many metric-based classification models have been proposed to predict fault-proneness of software module. This paper presents two prediction models using Bayesian classifier which is one of the most popular modern classification algorithms. Bayesian model based on Bayesian probability theory can be a promising technique for software quality prediction. This is due to the ability to represent uncertainty using probabilities and the ability to partly incorporate expert's knowledge into training data. The two models, Na$\ddot{i}$veBayes(NB) and Bayesian Belief Network(BBN), are constructed and dimensionality reduction of training data and test data are performed before model evaluation. Prediction accuracy of the model is evaluated using two prediction error measures, Type I error and Type II error, and compared with well-known prediction models, backpropagation neural network model and support vector machine model. The results show that the prediction performance of BBN model is slightly better than that of NB. For the data set with ambiguity, although the BBN model's prediction accuracy is not as good as the compared models, it achieves better performance than the compared models for the data set without ambiguity.
실제 운용 환경에서 자동문서분류시스템의 성공을 위해서 충분하지 못한 학습문서의 문제와 특징 공간들에 대한 사전지식이 없는 상황을 해결하는 것이 관건이다. 이런 맥락에서 많은 자동문서분류 시스템의 구축을 위해 나이브 베이즈 문서분류 알고리즘을 사용한다. 이는 기존 학습된 분류모델과 특징 공간을 점진적으로 갱신함으로써 분류모델을 향상시키는 것이 매우 용이하기 때문이다. 본 논문에서는 특징 가중치를 이용하여 문서분류기의 성능을 향상시키는 기법을 제안한다. 기본 아이디어는 문서분류 모델의 인자로서 특징들의 분포뿐만 아니라 각 특징들의 중요도를 반영하는 것이다. 속성 선택을 미리 수행하여 학습모델을 만드는 것이 아니라, 속성 중요도를 나이브 베이즈 학습 모델에 포함시킴으로써 보다 정확한 모델을 생성할 수 있다. 또한 동적 환경에서 점진적인 특징 가중치 부여를 위해 기존의 특징 갱신 기법을 확장한 알고리즘도 제안한다. 본 논문에서 제안된 기법을 평가하기 위해서 Reuters-21578과 20Newsgroup 문서집합 이용한 실험을 실시하여, 제안된 기법이 전통적인 나이브 베이즈 분류기의 성능을 크게 향상시킴을 증명한다.
데이터마이닝 문제는 데이터를 그 속성들에 따라 분류하여 예측하는 것뿐만 아니라 분류된 속성들간의 연관성에 대해 잘 설명할 수 있어야 한다. 일반적으로 변수들간의 연관성을 잘 설명할 수 있으면서도 높은 예측력을 가지는 방법으로는 베이지안 네트웍 분류자(Bayesian network classifier)가 있다. 그러나 이것은 데이터 마이닝과 같은 대용량 데이터에서는 성능이 떨어지는 단점이 있다. 이에 이 논문에서는 최근 RBF 신경망이 입력변수 선정문제에 성공적으로 적용된 Reversible Jump Markov Chain Monte Carlo 방법을 이용하여 최적의 입력변수들만을 선택하여 베이지안 네트웍을 학습하는 Selective BN Augmented Naive-Bayes Classifier를 새로운 방안으로 제안하고 이를 실제 데이터마이닝 문제에 적용한 결과를 제시한다.
Junior, Estevam R. Hruschka;Galvao, Sebastian D. C. de O.
Journal of Computing Science and Engineering
/
제1권2호
/
pp.162-176
/
2007
Machine Learning (ML) has become very popular within Data Mining (KDD) and Artificial Intelligence (AI) research and their applications. In the ML and KDD contexts, two main approaches can be used for inducing a Bayesian Network (BN) from data, namely, Conditional Independence (CI) and the Heuristic Search (HS). When a BN is induced for classification purposes (Bayesian Classifier - BC), it is possible to impose some specific constraints aiming at increasing the computational efficiency. In this paper a new CI based approach to induce BCs from data is proposed and two algorithms are presented. Such approach is based on the Markov Blanket concept in order to impose some constraints and optimize the traditional PC learning algorithm. Experiments performed with the ALARM, as well as other six UCI and three artificial domains revealed that the proposed approach tends to execute fewer comparison tests than the traditional PC. The experiments also show that the proposed algorithms produce competitive classification rates when compared with both, PC and Naive Bayes.
이 논문에서는 알려지지 않은 PE 파일이 멀웨어의 여부를 분류하는 방법을 연구하였다. 멀웨어 탐지 영역의 분류 문제에서는 특징 추출과 분류가 중요하다. 위와 같은 목적으로 멀웨어 탐지를 위해 우리는 어떠한 특징들이 분류기에 적합한지, 어떠한 분류기가 선택된 특징들에 대해 연구하였다. 그래서 우리는 멀웨어 탐지를 위한 기능과 분류기의 좋은 조합을 찾기 위해 실험하였다. 이를 위해 두 단계로 실험을 실시하였다. 1 단계에서는 Opcode, Windows API, Opcode + Windows API의 특징들을 이용하여 정확도를 비교하였다. 여기에서 Opcode + Windows API 특징이 다른 특징보다 더 좋은 결과를 나타내었다. 2 단계에서는 나이브 베이즈, K-NN, SVM, DT의 분류기들의 AUC 값을 비교하였다. 그 결과 DT의 분류기가 더 좋은 결과 값을 나타내었다.
인터넷의 급속한 성장으로 데이터의 송수신의 편리성과 비용이 들지 않는다는 장점 때문에 매일 수백만 건의 무차별적인 광고성 스팸 문자와 메일이 발송되고 있다. 아직은 스팸 단어나 스팸 번호를 차단하는 방법을 주로 사용하지만, 기계 학습이 떠오름에 따라 스팸을 필터링하는 방법에 대해 다양한 방식으로 활발히 연구되고 있다. 그러나 스팸에서만 등장하는 단어나 패턴은 스팸 필터링 시스템에 의해 걸러지지 않기 위해 지속적으로 변화하고 있기 때문에, 기존 기계 학습 메커니즘으로는 새로운 단어와 패턴을 감지, 적응할 수 없다. 최근 이러한 기존 기계 학습의 한계점을 극복하기 위해 기존의 지식을 활용하여 새로운 지식을 지속적으로 학습하도록 하는 Lifelong Learning(이하 LL)의 개념이 대두되었다. 본 논문에서는 문서 분류에 가장 많이 사용되는 나이브 베이즈와 Lifelong Machine Learning(이하 LLML)의 앙상블 기법을 이용한 스팸 메시지 필터링 방법을 제안한다. 우리는 기존 스팸 필터링 시스템에 가장 많이 사용되는 나이브 베이즈와, LLML 모델 중 ELLA를 적용하여 LL의 성능을 검증한다.
품질뿐만 아니라 물질적 풍요가 되어가는 IT융합 환경에서 상황정보를 파악하는 것은 개인화 추천 서비스 전략의 중요한 성공요소가 되고 있다. 본 논문에서는 서비스 온톨로지 기반의 상황인식 모델링을 이용한 추천을 제안하였다. 이기종 디바이스 구축을 위해 OSGi 프레임워크 기반의 데이터 획득 모듈을 구축하고 온톨로지 기반의 상황정보 모델을 개발한다. 상황정보 모델을 위해서 추천 시스템에 필요한 상황정보를 추출하고 분류한다. 상황정보를 사용하여 온톨로지 기반의 상황인식 모델을 개발하고 협력적 필터링의 추천에 반영한다. 상황인식 모델은 Na$\"{\i}$ve Bayes 분류자를 사용하여 상황에 따라 서비스를 선택한 정보를 반영하고 사용자에게 제공한다. 제안한 방법의 성능 평가를 하기 위해 대응표본 T-검정을 실시하여 유용성을 검증하였다. 평가 결과, 서비스에 대한 만족도의 차이가 통계적으로 의미가 있음을 증명하였고 높은 만족도를 보임을 확인하였다.
Yin, Cheng Jet;Ayop, Zakiah;Anawar, Syarulnaziah;Othman, Nur Fadzilah;Zainudin, Norulzahrah Mohd
International Journal of Computer Science & Network Security
/
제21권11호
/
pp.294-300
/
2021
The current society relies upon social media on an everyday basis, which contributes to finding which of the following supervised machine learning algorithms used in sentiment analysis have higher accuracy in detecting Malay internet slang and short forms which can be offensive to a person. This paper is to determine which of the algorithms chosen in supervised machine learning with higher accuracy in detecting internet slang and short forms. To analyze the results of the supervised machine learning classifiers, we have chosen two types of datasets, one is political topic-based, and another same set but is mixed with 50 tweets per targeted keyword. The datasets are then manually labelled positive and negative, before separating the 275 tweets into training and testing sets. Naïve Bayes and Random Forest classifiers are then analyzed and evaluated from their performances. Our experiment results show that Random Forest is a better classifier compared to Naïve Bayes.
This article performs a detailed data scrutiny on a chronic kidney disease (CKD) dataset to select efficient instances and relevant features. Data relevancy is investigated using feature extraction, hybrid outlier detection, and handling of missing values. Data instances that do not influence the target are removed using data envelopment analysis to enable reduction of rows. Column reduction is achieved by ranking the attributes through feature selection methodologies, namely, extra-trees classifier, recursive feature elimination, chi-squared test, analysis of variance, and mutual information. These methodologies are ranked via Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) using weight optimization to identify the optimal features for model building from the CKD dataset to facilitate better prediction while diagnosing the severity of the disease. An efficient hybrid ensemble and novel similarity-based classifiers are built using the pruned dataset, and the results are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest neighbors, and support vector machines. The hybrid ensemble classifier yields a better prediction accuracy of 98.31% for the features selected by extra tree classifier (ETC), which is ranked as the best by TOPSIS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.