• Title/Summary/Keyword: Naive

Search Result 703, Processing Time 0.027 seconds

An Attribute Weighting Approach for Naive Bayesian based on Very Fast Decision Tree (Very Fast Decision Tree 기반 Naive Bayesian 알고리즘의 Weight 부여 기법)

  • Kim, Se-Jun;Yoo, Seung-Eon;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.139-140
    • /
    • 2018
  • 본 논문에서는 지도 기계 학습 알고리즘 중 하나인 Naive Bayesian (NB) 알고리즘의 데이터 분류 정확도를 향상시키기 위하여 데이터 속성에 Weight를 부여하는 새로운 기법을 제안하였다. 기존에 Decision Tree(DT) 알고리즘의 깊이를 이용하여 Weigth를 부여하는 방법이 제안되었으나, DT를 구축하는데 오버헤드가 크기 때문에 데이터의 실시간 분석이나 자원 제한적인 환경에서의 적용은 어렵다는 단점이 있다. 이를 해결하기 위하여 본 논문에서는 최소한의 데이터를 사용하여 신속하게 DT를 구축하는 Very Fast Decision Tree (VFDT) 알고리즘 기반의 Weight 부여 기법을 제안함으로써 적은 오버헤드로 NB의 정확도를 향상시킨다.

  • PDF

Text-independent Speaker Identification Using Soft Bag-of-Words Feature Representation

  • Jiang, Shuangshuang;Frigui, Hichem;Calhoun, Aaron W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.240-248
    • /
    • 2014
  • We present a robust speaker identification algorithm that uses novel features based on soft bag-of-word representation and a simple Naive Bayes classifier. The bag-of-words (BoW) based histogram feature descriptor is typically constructed by summarizing and identifying representative prototypes from low-level spectral features extracted from training data. In this paper, we define a generalization of the standard BoW. In particular, we define three types of BoW that are based on crisp voting, fuzzy memberships, and possibilistic memberships. We analyze our mapping with three common classifiers: Naive Bayes classifier (NB); K-nearest neighbor classifier (KNN); and support vector machines (SVM). The proposed algorithms are evaluated using large datasets that simulate medical crises. We show that the proposed soft bag-of-words feature representation approach achieves a significant improvement when compared to the state-of-art methods.

Filtering Technique of P2P Mobile Agent using Naive Bayesian Algorithm (Naive Bayesian 알고리즘을 이용한 P2P 모바일 에이전트의 필터링 기법)

  • Lee Se-Il;Lee Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.363-366
    • /
    • 2005
  • 유비쿼터스 컴퓨팅에서 사용자에게 필요한 서비스를 지능적으로 제공하기 위해서는 컨텍스트 정보의 효과적인 필터링이 필요하다. 현재까지 사용되고 있는 필터링 기술은 온라인상에서 사용되는 사용자 정보를 기준으로 서비스를 제공하고 있다. 하지만 휴대용 유$\cdot$무선기기에서 컨텍스트 인식에 기반을 둔 서비스를 제공하기 위해서는 복잡한 필터링과정과 큰 저장 공간이 요구된다. 따라서 본 논문에서는 사용자 주변에 널려 있는 센서를 통해 입력된 컨텍스트 정보들을 효율적으로 필터링하여 사용자에게 필요한 서비스만을 제공하도록 하였다. 이를 위해서 기존의 P2P 모바일 에이전트에서 사용되는 협력적 필터링 기술에 Naive Bayesian 알고리즘을 혼합한 컨텍스트 협력적 필터링 알고리즘을 제안한다.

  • PDF

Preservice Students Concept형s Change on Change in Seasons through New Models (새로운 계절변화 실험모형이 초등예비교사의 개념 변화에 미치는 효과)

  • 채동현
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.1
    • /
    • pp.23-32
    • /
    • 1998
  • A good example of the persistence of naive theories about change in seasons is well knowned: A filmmaker carried a camera into the crowd of gowned graduates at the 1987 commencement of Harvard University and asked a simple question, that is, "Why is it hotter in summer than in winter?" to twenty five students chosen at random. All of the answers except two were that the Earth is closer to the Sun in summer, so it is hotter in summer, but the Earth is farther from the Sun in winter, so it is cooler in winter. Until now, naive theories about the cause in seasons have been extensively studied. However, few studies to overcome these naive theories were reported. Author takes two steps: first, a new model on the cause in seasons is developed. Second, preservice students concepts' change on the cause in seasons through the new model is observed. The author concludes that the new model have a good effect on the preservice students concepts' change on the cause in seasons.

  • PDF

A Study on Feature Extraction Performance of Naive Convolutional Auto Encoder to Natural Images (자연 영상에 대한 Naive Convolutional Auto Encoder의 특징 추출 성능에 관한 연구)

  • Lee, Sung Ju;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1286-1289
    • /
    • 2022
  • 최근 영상 군집화 분야는 딥러닝 모델에게 Self-supervision을 주거나 unlabeled 영상에 유사-레이블을 주는 방식으로 연구되고 있다. 또한, 고차원 컬러 자연 영상에 대해 잘 압축된 특징 벡터를 추출하는 것은 군집화에 있어 중요한 기준이 된다. 본 연구에서는 자연 영상에 대한 Convolutional Auto Encoder의 특징 추출 성능을 평가하기 위해 설계한 실험 방법을 소개한다. 특히 모델의 특징 추출 능력을 순수하게 확인하기 위하여 Self-supervision 및 유사-레이블을 제공하지 않은 채 Naive한 모델의 결과를 분석할 것이다. 먼저 실험을 위해 설계된 4가지 비지도학습 모델의 복원 결과를 통해 모델별 학습 정도를 확인한다. 그리고 비지도 모델이 다량의 unlabeled 영상으로 학습되어도 더 적은 labeled 데이터로 학습된 지도학습 모델의 특징 추출 성능에 못 미침을 특징 벡터의 군집화 및 분류 실험 결과를 통해 확인한다. 또한, 지도학습 모델에 데이터셋 간 교차 학습을 수행하여 출력된 특징 벡터의 군집화 및 분류 성능도 확인한다.

  • PDF

Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification (자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정)

  • Young-Nam Kim
    • 대한상한금궤의학회지
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF

Identifying the Optimal Machine Learning Algorithm for Breast Cancer Prediction

  • ByungJoo Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.80-88
    • /
    • 2024
  • Breast cancer remains a significant global health burden, necessitating accurate and timely detection for improved patient outcomes. Machine learning techniques have demonstrated remarkable potential in assisting breast cancer diagnosis by learning complex patterns from multi-modal patient data. This study comprehensively evaluates several popular machine learning models, including logistic regression, decision trees, random forests, support vector machines (SVMs), naive Bayes, k-nearest neighbors (KNN), XGBoost, and ensemble methods for breast cancer prediction using the Wisconsin Breast Cancer Dataset (WBCD). Through rigorous benchmarking across metrics like accuracy, precision, recall, F1-score, and area under the ROC curve (AUC), we identify the naive Bayes classifier as the top-performing model, achieving an accuracy of 0.974, F1-score of 0.979, and highest AUC of 0.988. Other strong performers include logistic regression, random forests, and XGBoost, with AUC values exceeding 0.95. Our findings showcase the significant potential of machine learning, particularly the robust naive Bayes algorithm, to provide highly accurate and reliable breast cancer screening from fine needle aspirate (FNA) samples, ultimately enabling earlier intervention and optimized treatment strategies.

Relationship Between Neurologic Soft Signs and Neuroleptic Treatment in Patients with Schizophrenia (정신분열증에서의 연성 신경학적 증상과 항정신병 약물 치료의 관련성)

  • Chae, Jeong-Ho;Chung, Chan-Ho;Hahm, Woong;Lee, Kyu-Hang;Lee, Chung-Kyoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.1 no.1
    • /
    • pp.117-123
    • /
    • 1994
  • This study was performed to examine the role of neuroleptics may in the development of neurologic soft signs in patients with schizophrenia. Neurologic soft signs were evaluated in 28 neuroleptic naive patients with schizophrenia or schizophreniform disorder and 31 neuroleptic non-naive patients with schizophrenia using a structured tool for measuring neurologic abnormalities, Neurological Evaluation Scale-Korean version(NES-K). Relationship to dose, duration and neurological side effects of neuroleptic treatment were also evaluated. Total scores of NES-K in neuroleptic naive group were significantly higher than those of non-naive group. Scores of motor coordination, sequencing of complex motor acts and others items in functional subcategories were also significantly higher in drug-naive patients. The sensory integration item was not different between two groups. After controlling covariates such ac dose of neuroleptics, age and sex, total scores, motor coordination and others items of NES-K were significantly higher in neuroleptic naive group. However there was no difference between drug naive and non-naive group in the sequencing of complex motor acts item due to effects of these covariates. In neuroleptic non-naive group the dosage of neuroleptics correlated with the motor coordination item, nor were there relationships between duration and side effects of neuroleptic treatment and neurologic soft signs. These findings suggest that neuroleptic treatment may play a only relative role in the development of neurologic soft signs in patients with schizophrenia and these abnormalities may be one of possible trait markers of schizophrenia. To elucidate this opinion, well-controlled, prospective study in same subjects will be helpful.

  • PDF

An Active Learning-based Method for Composing Training Document Set in Bayesian Text Classification Systems (베이지언 문서분류시스템을 위한 능동적 학습 기반의 학습문서집합 구성방법)

  • 김제욱;김한준;이상구
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.12
    • /
    • pp.966-978
    • /
    • 2002
  • There are two important problems in improving text classification systems based on machine learning approach. The first one, called "selection problem", is how to select a minimum number of informative documents from a given document collection. The second one, called "composition problem", is how to reorganize selected training documents so that they can fit an adopted learning method. The former problem is addressed in "active learning" algorithms, and the latter is discussed in "boosting" algorithms. This paper proposes a new learning method, called AdaBUS, which proactively solves the above problems in the context of Naive Bayes classification systems. The proposed method constructs more accurate classification hypothesis by increasing the valiance in "weak" hypotheses that determine the final classification hypothesis. Consequently, the proposed algorithm yields perturbation effect makes the boosting algorithm work properly. Through the empirical experiment using the Routers-21578 document collection, we show that the AdaBUS algorithm more significantly improves the Naive Bayes-based classification system than other conventional learning methodson system than other conventional learning methods

Development of Incident Detection Algorithm Using Naive Bayes Classification (나이브 베이즈 분류기를 이용한 돌발상황 검지 알고리즘 개발)

  • Kang, Sunggwan;Kwon, Bongkyung;Kwon, Cheolwoo;Park, Sangmin;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.25-39
    • /
    • 2018
  • The purpose of this study is to develop an efficient incident detection algorithm by applying machine learning, which is being widely used in the transport sector. As a first step, network of the target site was constructed with micro-simulation model. Secondly, data has been collected under various incident scenarios produced with combination of variables that are expected to affect the incident situation. And, detection results from both McMaster algorithm, a well known incident detection algorithm, and the Naive Bayes algorithm, developed in this study, were compared. As a result of comparison, Naive Bayes algorithm showed less negative effect and better detect rate (DR) than the McMaster algorithm. However, as DR increases, so did false alarm rate (FAR). Also, while McMaster algorithm detected in four cycles, Naive Bayes algorithm determine the situation with just one cycle, which increases DR but also seems to have increased FAR. Consequently it has been identified that the Naive Bayes algorithm has a great potential in traffic incident detection.