• Title/Summary/Keyword: Naive

Search Result 703, Processing Time 0.023 seconds

Shaping Heterogeneity of Naive CD8+ T Cell Pools

  • Sung-Woo Lee;Gil-Woo Lee;Hee-Ok Kim;Jae-Ho Cho
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.2.1-2.19
    • /
    • 2023
  • Immune diversification helps protect the host against a myriad of pathogens. CD8+ T cells are essential adaptive immune cells that inhibit the spread of pathogens by inducing apoptosis in infected host cells, ultimately ensuring complete elimination of infectious pathogens and suppressing disease development. Accordingly, numerous studies have been conducted to elucidate the mechanisms underlying CD8+ T cell activation, proliferation, and differentiation into effector and memory cells, and to identify various intrinsic and extrinsic factors regulating these processes. The current knowledge accumulated through these studies has led to a huge breakthrough in understanding the existence of heterogeneity in CD8+ T cell populations during immune response and the principles underlying this heterogeneity. As the heterogeneity in effector/memory phases has been extensively reviewed elsewhere, in the current review, we focus on CD8+ T cells in a "naive" state, introducing recent studies dealing with the heterogeneity of naive CD8+ T cells and discussing the factors that contribute to such heterogeneity. We also discuss how this heterogeneity contributes to establishing the immense complexity of antigen-specific CD8+ T cell response.

Semantics Environment for U-health Service driven Naive Bayesian Filtering for Personalized Service Recommendation Method in Digital TV (디지털 TV에서 시멘틱 환경의 유헬스 서비스를 위한 나이브 베이지안 필터링 기반 개인화 서비스 추천 방법)

  • Kim, Jae-Kwon;Lee, Young-Ho;Kim, Jong-Hun;Park, Dong-Kyun;Kang, Un-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.81-90
    • /
    • 2012
  • For digital TV, the recommendation of u-health personalized service of semantic environment should be done after evaluating individual physical condition, illness and health condition. The existing recommendation method of u-health personalized service of semantic environment had low user satisfaction because its recommendation was dependent on ontology for analyzing significance. We propose the personalized service recommendation method based on Naive Bayesian Classifier for u-health service of semantic environment in digital TV. In accordance with the proposed method, the condition data is inferred by using ontology, and the transaction is saved. By applying naive bayesian classifier that uses preference information, the service is provided after inferring based on user preference information and transaction formed from ontology. The service inferred based on naive bayesian classifier shows higher precision and recall ratio of the contents recommendation rather than the existing method.

Sentiment Classification of Movie Reviews using Levenshtein Distance (Levenshtein 거리를 이용한 영화평 감성 분류)

  • Ahn, Kwang-Mo;Kim, Yun-Suk;Kim, Young-Hoon;Seo, Young-Hoon
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.581-587
    • /
    • 2013
  • In this paper, we propose a method of sentiment classification which uses Levenshtein distance. We generate BOW(Bag-Of-Word) applying Levenshtein daistance in sentiment features and used it as the training set. Then the machine learning algorithms we used were SVMs(Support Vector Machines) and NB(Naive Bayes). As the data set, we gather 2,385 reviews of movies from an online movie community (Daum movie service). From the collected reviews, we pick sentiment words up manually and sorted 778 words. In the experiment, we perform the machine learning using previously generated BOW which was applied Levenshtein distance in sentiment words and then we evaluate the performance of classifier by a method, 10-fold-cross validation. As the result of evaluation, we got 85.46% using Multinomial Naive Bayes as the accuracy when the Levenshtein distance was 3. According to the result of the experiment, we proved that it is less affected to performance of the classification in spelling errors in documents.

A Study of Line-shaped Echo Detection Method using Naive Bayesian Classifier (나이브 베이지안 분류기를 이용한 선에코 탐지 방법에 대한 연구)

  • Lee, Hansoo;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.360-365
    • /
    • 2014
  • There are many types of advanced devices for weather prediction process such as weather radar, satellite, radiosonde, and other weather observation devices. Among them, the weather radar is an essential device for weather forecasting because the radar has many advantages like wide observation area, high spatial and time resolution, and so on. In order to analyze the weather radar observation result, we should know the inside structure and data. Some non-precipitation echoes exist inside of the observed radar data. And these echoes affect decreased accuracy of weather forecasting. Therefore, this paper suggests a method that could remove line-shaped non-precipitation echo from raw radar data. The line-shaped echoes are distinguished from the raw radar data and extracted their own features. These extracted data pairs are used as learning data for naive bayesian classifier. After the learning process, the constructed naive bayesian classifier is applied to real case that includes not only line-shaped echo but also other precipitation echoes. From the experiments, we confirm that the conclusion that suggested naive bayesian classifier could distinguish line-shaped echo effectively.

Performance Evaluation of EEG-BCI Interface Algorithm in BCI(Brain Computer Interface)-Naive Subjects (뇌컴퓨터접속(BCI) 무경험자에 대한 EEG-BCI 알고리즘 성능평가)

  • Kim, Jin-Kwon;Kang, Dae-Hun;Lee, Young-Bum;Jung, Hee-Gyo;Lee, In-Su;Park, Hae-Dae;Kim, Eun-Ju;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.428-437
    • /
    • 2009
  • The Performance research about EEG-BCI algorithm in BCI-naive subjects is very important for evaluating the applicability to the public. We analyzed the result of the performance evaluation experiment about the EEG-BCI algorithm in BCI-naive subjects on three different aspects. The EEG-BCI algorithm used in this paper is composed of the common spatial pattern(CSP) and the least square linear classifier. CSP is used for obtaining the characteristic of event related desynchronization, and the least square linear classifier classifies the motor imagery EEG data of the left hand or right hand. The performance evaluation experiments about EEG-BCI algorithm is conducted for 40 men and women whose age are 23.87${\pm}$2.47. The performance evaluation about EEG-BCI algorithm in BCI-naive subjects is analyzed in terms of the accuracy, the relation between the information transfer rate and the accuracy, and the performance changes when the different types of cue were used in the training session and testing session. On the result of experiment, BCI-naive group has about 20% subjects whose accuracy exceed 0.7. And this results of the accuracy were not effected significantly by the types of cue. The Information transfer rate is in the inverse proportion to the accuracy. And the accuracy shows the severe deterioration when the motor imagery is less then 2 seconds.

A Naive Bayesian-based Model of the Opponent's Policy for Efficient Multiagent Reinforcement Learning (효율적인 멀티 에이전트 강화 학습을 위한 나이브 베이지만 기반 상대 정책 모델)

  • Kwon, Ki-Duk
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.165-177
    • /
    • 2008
  • An important issue in Multiagent reinforcement learning is how an agent should learn its optimal policy in a dynamic environment where there exist other agents able to influence its own performance. Most previous works for Multiagent reinforcement learning tend to apply single-agent reinforcement learning techniques without any extensions or require some unrealistic assumptions even though they use explicit models of other agents. In this paper, a Naive Bayesian based policy model of the opponent agent is introduced and then the Multiagent reinforcement learning method using this model is explained. Unlike previous works, the proposed Multiagent reinforcement learning method utilizes the Naive Bayesian based policy model, not the Q function model of the opponent agent. Moreover, this learning method can improve learning efficiency by using a simpler one than other richer but time-consuming policy models such as Finite State Machines(FSM) and Markov chains. In this paper, the Cat and Mouse game is introduced as an adversarial Multiagent environment. And then effectiveness of the proposed Naive Bayesian based policy model is analyzed through experiments using this game as test-bed.

  • PDF

A Design of FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) using Naive Bayesian and Data Mining (나이브 베이지안과 데이터 마이닝을 이용한 FHIDS(Fuzzy Logic based Hybrid Intrusion Detection System) 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • This paper proposes an FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) design that detects anomaly and misuse attacks by using a Naive Bayesian algorithm, Data Mining, and Fuzzy Logic. The NB-AAD(Naive Bayesian based Anomaly Attack Detection) technique using a Naive Bayesian algorithm within the FHIDS detects anomaly attacks. The DM-MAD(Data Mining based Misuse Attack Detection) technique using Data Mining within it analyzes the correlation rules among packets and detects new attacks or transformed attacks by generating the new rule-based patterns or by extracting the transformed rule-based patterns. The FLD(Fuzzy Logic based Decision) technique within it judges the attacks by using the result of the NB-AAD and DM-MAD. Therefore, the FHIDS is the hybrid attack detection system that improves a transformed attack detection ratio, and reduces False Positive ratio by making it possible to detect anomaly and misuse attacks.

Performance Evaluation of a Naive Bayesian Classifier using various Feature Selection Methods (자질선정에 따른 Naive Bayesian 분류기의 성능 비교)

  • 국민상;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.33-36
    • /
    • 2000
  • 베이즈 확률을 이용한 분류기는 자동분류 초기부터 사용되어 아직까지 이 분야에서 가장 많이 사용되는 분류기 중 하나이다. 본 논문에서는 KTSET 문서에서 임의로 추출한 198건의 정보과학회 관련 논문의 제목 및 초록을 대상으로 베이즈 확률을 이용한 문서의 자동분류 실험을 수행하였으며, 더불어 Naive Bayesian 분류기에 가장 적합한 자질선정 방법을 찾고자 카이제곱 통계량, 상호정보량 및 기대상호정보량, 정보획득량, 역문헌빈도, 역카테고리빈도 등 6가지의 자질선정 기준을 실험하였다. 실험 결과는 카이제곱 통계량을 이용한 분류 실험의 성능이 가장 좋았고, 기대상호정보량과 정보획득량, 역카테고리빈도 또한 자질수에 큰 영향을 받지 않고 비교적 안정적인 성능을 보였다.

  • PDF

An Effective Management Method of Multi-Agent Using Naive Bayes (네이브 베이즈를 이용한 멀티 에이전트의 효율적인 관리 방법)

  • Hwang Jeong-Sik;Ryu Kyung-Hyun;Chung Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.275-278
    • /
    • 2006
  • 멀티 에이전트(Multi-Agent)들이 상호 연동하여 공통의 목적을 수행하기 위해서는 에이전트를 관리하는 매니지먼트 에이전트(Management Agent)가 요구되고, 주어진 환경에서 획득한 제한된 지식을 효율적으로 이용하는 방법이 필요하다. 본 논문에서는 네이브 베이즈 이론을 적용하여 각 에이전트의 속성값(Attribute Value)에 따라 매니지먼트 에이전트가 각 에이전트를 효율적으로 관리할 수 있는 NBMA(Naive Bayes Management Agent)를 제안하고 이를 이용한 미팅 참가 결정 에이전트를 제안한다. NBMA는 고유한 속성을 지닌 여러 개의 하위 에이전트와 그들을 관리하는 매니지먼트 에이전트로 구성되어 있으며 매니지먼트 에이전트는 하위 에이전트들의 고유한 속성에 대한 메타지식을 이용하여 관리 하도록 한다. 하위 에이전트간에는 상호 조건부 독립(mutually conditional independence) 가정하에 복수의 속성값을 취하며 이러한 속성값에 따라 매니지먼트 에이전트가 조정과 의사결정을 하도록 한다.

  • PDF

Suggesting Forecasting Methods for Dietitians at University Foodservice Operations

  • Ryu Ki-Sang
    • Nutritional Sciences
    • /
    • v.9 no.3
    • /
    • pp.201-211
    • /
    • 2006
  • The purpose of this study was to provide dietitians with the guidance in forecasting meal counts for a university/college foodservice facility. The forecasting methods to be analyzed were the following: naive model 1, 2, and 3; moving average, double moving average, simple exponential smoothing, double exponential smoothing, Holt's, and Winters' methods, and simple linear regression. The accuracy of the forecasting methods was measured using mean squared error and Theil's U-statistic. This study showed how to project meal counts using 10 forecasting methods for dietitians. The results of this study showed that WES was the most accurate forecasting method, followed by $na\ddot{i}ve$ 2 and naive 3 models. However, naive model 2 and 3 were recommended for using by dietitians in university/college dining facilities because of the accuracy and ease of use. In addition, the 2000 spring semester data were better than the 2000 fall semester data to forecast 2001spring semester data.