• Title/Summary/Keyword: Naive

Search Result 703, Processing Time 0.021 seconds

Mutual Information in Naive Bayes with Kernel Density Estimation (나이브 베이스에서의 커널 밀도 측정과 상호 정보량)

  • Xiang, Zhongliang;Yu, Xiangru;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.86-88
    • /
    • 2014
  • Naive Bayes (NB) assumption has some harmful effects in classification to the real world data. To relax this assumption, we now propose approach called Naive Bayes Mutual Information Attribute Weighting with Smooth Kernel Density Estimation (NBMIKDE) that combine the smooth kernel for attribute and attribute weighting method based on mutual information measure.

  • PDF

An Improvement of Accuracy for NaiveBayes by Using Large Word Sets (빈발단어집합을 이용한 NaiveBayes의 정확도 개선)

  • Lee Jae-Moon
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.169-178
    • /
    • 2006
  • In this paper, we define the large word sets which are noble variations the large item sets in mining association rules, and improve the accuracy for NaiveBayes based on the defined large word sets. In order to use them, a document is divided into the several paragraphs, and then each paragraph can be transformed as the transaction by extracting words in it. The proposed method was implemented by using Al:Categorizer framework and its accuracies were measured by the experiments for reuter-21578 data set. The results of the experiments show that the proposed method improves the accuracy of the conventional NaiveBayes.

  • PDF

Improving Multinomial Naive Bayes Text Classifier (다항시행접근 단순 베이지안 문서분류기의 개선)

  • 김상범;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.259-267
    • /
    • 2003
  • Though naive Bayes text classifiers are widely used because of its simplicity, the techniques for improving performances of these classifiers have been rarely studied. In this paper, we propose and evaluate some general and effective techniques for improving performance of the naive Bayes text classifier. We suggest document model based parameter estimation and document length normalization to alleviate the Problems in the traditional multinomial approach for text classification. In addition, Mutual-Information-weighted naive Bayes text classifier is proposed to increase the effect of highly informative words. Our techniques are evaluated on the Reuters21578 and 20 Newsgroups collections, and significant improvements are obtained over the existing multinomial naive Bayes approach.

Calculating the Importance of Attributes in Naive Bayesian Classification Learning (나이브 베이시안 분류학습에서 속성의 중요도 계산방법)

  • Lee, Chang-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.83-87
    • /
    • 2011
  • Naive Bayesian learning has been widely used in machine learning. However, in traditional naive Bayesian learning, we make two assumptions: (1) each attribute is independent of each other (2) each attribute has same importance in terms of learning. However, in reality, not all attributes are the same with respect to their importance. In this paper, we propose a new paradigm of calculating the importance of attributes for naive Bayesian learning. The performance of the proposed methods has been compared with those of other methods including SBC and general naive Bayesian. The proposed method shows better performance in most cases.

User and Item based Collaborative Filtering Using Classification Property Naive Bayesian (분류 속성과 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링)

  • Kim, Jong-Hun;Kim, Yong-Jip;Rim, Kee-Wook;Lee, Jung-Hyun;Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.23-33
    • /
    • 2007
  • The collaborative filtering has used the nearest neighborhood method based on the preference and the similarity using the Pearson correlation coefficient. Therefore, it does not reflect content of the items and has the problems of the sparsity and scalability as well. the item-based collaborative filtering has been practically used to improve these defects, but it still does not reflect attributes of the item. In this paper, we propose the user and item based collaborative filtering using the classification property and Naive Bayesian to supplement the defects in the existing recommendation system. The proposed method complexity refers to the item similarity based on explicit data and the user similarity based on implicit data for handing the sparse problem. It applies to the Naive Bayesian to the result of reference. Also, it can enhance the accuracy as computation of the item similarity reflects on the correlative rank among the classification property to reflect attributes.

Breast Cancer Diagnosis using Naive Bayes Analysis Techniques (Naive Bayes 분석기법을 이용한 유방암 진단)

  • Park, Na-Young;Kim, Jang-Il;Jung, Yong-Gyu
    • Journal of Service Research and Studies
    • /
    • v.3 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • Breast cancer is known as a disease that occurs in a lot of developed countries. However, in recent years, the incidence of Korea's modern woman is increased steadily. As well known, breast cancer usually occurs in women over 50. In the case of Korea, however, the incidence of 40s with young women is increased steadily than the West. Therefore, it is a very urgent task to build a manual to the accurate diagnosis of breast cancer in adult women in Korea. In this paper, we show how using data mining techniques to predict breast cancer. Data mining refers to the process of finding regular patterns or relationships among variables within the database. To this, sophisticated analysis using the model, you will find useful information that is easily revealed. In this paper, through experiments Deicion Tree Naive Bayes analysis techniques were compared using analysis techniques to diagnose breast cancer. Two algorithms was analyzed by applying C4.5 algorithm. Deicison Tree classification accuracy was fairly good. Naive Bayes classification method showed better accuracy compared to the Decision Tree method.

  • PDF

Scalable and Accurate Intrusion Detection using n-Gram Augmented Naive Bayes and Generalized k-Truncated Suffix Tree (N-그램 증강 나이브 베이스 알고리즘과 일반화된 k-절단 서픽스트리를 이용한 확장가능하고 정확한 침입 탐지 기법)

  • Kang, Dae-Ki;Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.805-812
    • /
    • 2009
  • In many intrusion detection applications, n-gram approach has been widely applied. However, n-gram approach has shown a few problems including unscalability and double counting of features. To address those problems, we applied n-gram augmented Naive Bayes with k-truncated suffix tree (k-TST) storage mechanism directly to classify intrusive sequences and compared performance with those of Naive Bayes and Support Vector Machines (SVM) with n-gram features by the experiments on host-based intrusion detection benchmark data sets. Experimental results on the University of New Mexico (UNM) benchmark data sets show that the n-gram augmented method, which solves the problem of independence violation that happens when n-gram features are directly applied to Naive Bayes (i.e. Naive Bayes with n-gram features), yields intrusion detectors with higher accuracy than those from Naive Bayes with n-gram features and shows comparable accuracy to those from SVM with n-gram features. For the scalable and efficient counting of n-gram features, we use k-truncated suffix tree mechanism for storing n-gram features. With the k-truncated suffix tree storage mechanism, we tested the performance of the classifiers up to 20-gram, which illustrates the scalability and accuracy of n-gram augmented Naive Bayes with k-truncated suffix tree storage mechanism.

Enhancing Red Tides Prediction using Fuzzy Reasoning and Naive Bayes Classifier (나이브베이스 분류자와 퍼지 추론을 이용한 적조 발생 예측의 성능향상)

  • Park, Sun;Lee, Seong-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1881-1888
    • /
    • 2011
  • Red tide is a natural phenomenon to bloom harmful algal, which fish and shellfish die en masse. Red tide damage with respect to sea farming has been occurred each year. Red tide damage can be minimized by means of prediction of red tide blooms. Red tide prediction using naive bayes classifier can be achieve good prediction results. The result of naive bayes method only determine red tide blooms, whereas the method can not know how increasing of red tide algae density. In this paper, we proposed the red tide blooms prediction method using fuzzy reasoning and naive bayes classifier. The proposed method can enhance the precision of red tide prediction and forecast the increasing density of red tide algae.

Aphrodisiac Evaluation in Sexually Naive Male Mice after Chronic Administration of Eurycoma longifolia Jack

  • Ang, Hooi Hoon;Sim, Meng-Kwoon
    • Natural Product Sciences
    • /
    • v.4 no.2
    • /
    • pp.58-61
    • /
    • 1998
  • Eurycoma longifolia Jack was evaluated for aphrodisiac property on sexually naive male mice using the electrical copulation cage. Optimum condition was provided for this study and the male mice were treated with 500 mg/kg of either chloroform, methanol, water or n-butanol fractions from E. longifolia Jack. However, the mice in the yohimbine and control groups received 30 mg/kg and 3 ml/kg of yohimbine and normal saline respectively. The male mice were then conditioned to seek either an estrous female, sexually vigorous male or no mouse, a measurement of right, wrong or no choice respectively. Besides this, hesitation time which was the time spent before the sexually naive male mice crossed the electrical grid (maintained at 0.12 mA) was also determined. Results showed that E. longifolia Jack possesses aphrodisiac property on the sexually naive male mice as shown by the slow and transient reduction in hesitation time and also a similar manner in the increase in the % of sexually naive male mice scoring right choice throughout the investigation period. Hence, this further supports the folkuse of this plant as aphrodisiac.

  • PDF

Application of a Naive Bayes Classifier for Topic Word Sense Disambiguation (주제어의 중의성 해소를 위한 Naive Bayes 분류기 적용에 관한 연구)

  • 유현숙;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.71-74
    • /
    • 2000
  • 단어의 의미 중의성을 해소하는 것은 자연언어처리의 중요한 문제 중의 하나이다. 특히 문서의 주제어가 중의성을 가질 때, 이 문서는 부적합한 범주에 속하게 되어 정보검색시 잡음을 일으키는 원인이 되기도 한다. 그러므로, 본 논문에서는 문서를 대표하는 주재어의 의미 중의성을 해소하기 위해 주변 문맥자질을 고려하는 방법을 모색한다 이를 위해 자연언어처리의 통계적 방법으로 문서 범주화에 많이 사용되는 Naive Bayes 분류기를 중의성 해소에 적용하고, 그 결과 얻어진 중의성 해소 성능을 평가한다.

  • PDF