• Title/Summary/Keyword: Naineris laevigata

Search Result 1, Processing Time 0.014 seconds

Molecular detection of Kudoa septempunctata (Myxozoa: Multivalvulida) in sea water and marine invertebrates

  • Paari, Alagesan;Jeon, Chan-Hyeok;Choi, Hye-Sung;Jung, Sung-Hee;Kim, Jeong-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.8
    • /
    • pp.16.1-16.8
    • /
    • 2017
  • The exportation of cultured olive flounder (Paralichthys olivaceus) in Korea has been recently decreasing due to the infections with a myxozoan parasite Kudoa septempunctata, and there is a strong demand for strict food safety management because the food poisoning associated with consumption of raw olive flounder harbouring K. septempunctata has been frequently reported in Japan. The life cycle and infection dynamics of K. septempunctata in aquatic environment are currently unknown, which hamper establishment of effective control methods. We investigated sea water and marine invertebrates collected from olive flounder farms for detecting K. septempunctata by DNA-based analysis, to elucidate infection dynamics of K. septempunctata in aquaculture farms. In addition, live marine polychaetes were collected and maintained in well plates to find any possible actinosporean state of K. septempunctata. The level of K. septempunctata DNA in rearing water fluctuated during the sampling period but the DNA was not detected in summer (June-July in farm A and August in farm B). K. septempunctata DNA was also detected in the polychaetes Naineris laevigata intestinal samples, showing decreased pattern of 40 to 0%. No actinosporean stage of K. septempunctata was observed in the polychaetes by microscopy. The absence of K. septempunctata DNA in rearing water of fish farm and the polychaetes N. laevigata intestinal samples during late spring and early summer indicate that the infection may not occur during this period. N. laevigata was suspected as the possible alternate invertebrate host of K. septempunctata, but the actinosporean stage was not found by well plate method and further studies will be necessary. This research provides important baseline information for understanding the infection dynamics of K. septempunctata in olive flounder farms and further establishment of control strategies.