• 제목/요약/키워드: Naegleria gruberi differentiation

검색결과 9건 처리시간 0.02초

Alteration of chromosomal structure within .betha.-Tubulin and flagellar calmodulin genes during differentiation of naegleria gruberi amebae into flagellates

  • Bok, Jin-Woong;Lee, Joo-Hun
    • Journal of Microbiology
    • /
    • 제33권3호
    • /
    • pp.222-227
    • /
    • 1995
  • We have examined DNase I sensitivity of .betha.-tubulin and flagellar calmodulin genes which are transiently and coordinately activated differentiation of Naegleria gruberi amebae into flagellates. The DNase I sensitivity of .betha.-tubulin and flagellar calmodulin genes changed in parallel with the changes in transcriptional activity of the respective genes during differentiation. The two genes were resistant to DNase I inamebae stage when transcription of the two genes was inactive. Forthy minutes after initiation of differentiation, when the two genes were most actively being transcribed, the two genes showed the highest sensitsivity to DNase I. One hundred and twenty minutes after initiation, the differentiation was completed and transcriptional activity of the two genes decreased to a low level. At this stage, the two genes were resistant to DNase I treatment like the ones at the amebae stage. This change in the DNase I sensitivity of the two genes was not observed when transcription of the two genes was blocked by adding cycloheximide at the beginning of differentiation.

  • PDF

Regulation of Actin Gene Expression During the Differentiation of Naegleria gruberi

  • Kim, Misook;Lee, Joo-Hun
    • Journal of Microbiology
    • /
    • 제39권1호
    • /
    • pp.42-48
    • /
    • 2001
  • The regulation of actin gene expression during the differentiation of Naegleria gruberi was examined. Actin mRNA concentration was maximal in amoebae and decreased rapidly after the initiation of differentiation. At 20 min after initiation, the concentration of actin mRNA decreased to 55% of the maximal value. The actin mRNA concentration decreased to the minimum at 80 min (15% of the maximum), and then began to increase slightly at the end of differentiation. This decrease of actin mRNA concentration was regulated by the repression of actin gene transcription based on nuclear run-on transcription experiments. The rates of transcription of actin gene in nuclei prepared at 40 and 80 min after the initiation of differentiation were 50 and 28% of that of nuclei prepared at the beginning of differentiation, respectively. The addition of cycloheximide at the initiation of differentiation inhibited both the rapid decrease in the concentration of actin mRNA and the repression of actin gene transcription. These results suggest that the rapid decrease in the concentration of actin mRNA during the differentiation of N. gruberi is accomplished by the repression of actin gene transcription and this transcriptional regulation requires continuous protein synthesis during the differentiation.

  • PDF

Effect of Polyamines on Cellular Differentiation of N. gruberi: Inhibition of Translation of Tubulin mRNA

  • Yoo, Jin-Uk;Kwon, Kyung-Soon;Cho, Hyun-Il;Kim, Dae-Myung;Chung, In-Kwon;Kim, Young-Min;Lee, Tae-Ho;Lee, Joo-Hun
    • Journal of Microbiology
    • /
    • 제35권4호
    • /
    • pp.315-322
    • /
    • 1997
  • The effects of a polyamine, spermine, on the differentiation of Naegleria gruberi amebas into flagellates were tested. Addition of spermine at early stages of differentiation (until 40 min after the initiation of differentiation) completely inhibited the differentiation. To understand the inhibition mechanism, we examined the effect of spermine treatment on the transcription and translation of differentiation-specific genes during differentiation. Addition of spermine at early stages did not inhibit the accumulation of two differentiation-specific mRNAs, ${\alpha}$-tubulin and Class I mRNA, significantly, but rather prevented the rapid degradation of the mRNAs in later overall protein synthesis partially and gradually. However, translation of the ${\alpha}$-tubulin mRNA was completely inhibited. These data suggest that the inhibition of differentiation of N. gruberi by spermine treatment did not result from the inhibition of transcription of differentiation-specific genes but from the specific inhibition of translation of the mRNAs during the differentiation.

  • PDF

Effects of Retinoic Acid and cAMP on the Differentiation of Naegleria gruberi Amoebas into Flagellates

  • Bora Kim;Hong Kyoung Kim;Daemyoung Kim;In Kwon Chung;Young Min Kim;Jin Won Cho;JooHun Lee
    • Animal cells and systems
    • /
    • 제3권2호
    • /
    • pp.207-213
    • /
    • 1999
  • During the differentiation of Naegleria gruberi amoebas into flagellates, the amoebas undergo sequential changes in cell shape and form new cellular organelles. To understand the nature of the signal which initiates this differentiation and the signal transduction pathway, we treated cells with four agents, PMA, retinoic acid (RA), okadaic acid, and cAMP. Retinoic acid and cAMP had specific effects on the differentiation of N. gruberi depending on the time of the drug treatment. Addition of (100$\mu$M) retinoic acid at the initiation of differentiation inhibited differentiation by blockinq the transcription of differentiation specific genes (e.g., $\beta$-tubulin). This inhibition of differentiation by retinoic acid was overcome by co-treatment with cAMP (or dbcAMP, 20 $\mu$M). Addition of retinoic acid at later stages (30 and 70 min) had no effect on the transcriptional regulation of the $\beta$-tubulin gene, however the differentiation was inhibited by different degrees. Co-treatment of cAMP at these stages did not overcome the inhibitory effect of retinoic acid. These results suggest that the role of retinoic acid as a transcriptional regulator might be conserved throughout the evolution of eukaryotes.

  • PDF