• Title/Summary/Keyword: Nacelle controller

Search Result 7, Processing Time 0.021 seconds

MPPT and Yawing Control of a New Horizontal-Axis Wind Turbine with Two Parallel-Connected Generators (수평 병렬형 풍력 발전기의 요각 및 MPPT 제어)

  • Lee, Kook-Sun;Choy, Ick;Cho, Whang;Back, Ju-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • Commonly used horizontal-axis wind turbines (HAWT) have the following structure: two or three blades, a nacelle which contains power converting equipments, generators, and a tower which supports the nacelle. The generated power is transmitted from the nacelle to the ground. Due to this structure, the power transmission lines are twisted when the nacelle is yawing. Thus, slip ring or additional yaw control mechanism is required. We propose a new structure of HAWT which is free of this transmission line problem. Moreover, the size of inverter can be reduced since two generators are connected in parallel in our mechanism so that power is distributed. A controller for yawing is developed so that it works in harmony with the controller for power generation. A MPPT (Maximum Power Point tracking) algorithm is implemented for the proposed system and efficiency of the system is validated by simulation.

A Modeling and Attitude Control of an Inspection and Cleaning Robot for Wind Turbines (풍력발전기 진단 및 청소를 위한 로봇의 모델링 및 자세제어)

  • Kong, Jin-Young;Lee, Jae-Soon;Kang, Yeon-Sik;Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.922-929
    • /
    • 2014
  • Wind turbines are in the limelight in the alternative energy industry. However, they face frequent and various problems during operation. We focused on the supervising of the blades of a wind turbine. In this paper, we present the design of a maintenance robot that takes the size of wind turbine blades into consideration, so the general form of the robot is a square with four wires fixed to its vertices and to the nacelle. After the robot is placed near the nacelle, it moves along the blades. We also designed an attitude control algorithm for the robot to maintain its balance. Our control algorithm for the robot consists of roll and pitch attitude controllers and a height controller. Each controller was designed independently and then superposed together. We used simulations to verify our control algorithm.

Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine

  • Kim, C.M.;Cho, J.R.;Kim, S.R.;Lee, Y.S.
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.333-350
    • /
    • 2017
  • Differing from the fixed-type, the dynamic motion of floating-type offshore wind turbines is very sensitive to wind and wave excitations. Thus, the sensing and monitoring of its motion is important to evaluate the dynamic responses to the external excitation. In this context, a monitoring system for sensing and processing the wind-induced dynamic motion of spar-type floating offshore wind turbine is developed in this study. It is developed by integrating a 1/00 scale model of 2.5MW spar-type floating offshore wind turbine, water basin equipped with the wind generator, sensing and data acquisition systems, real-time CompactRIO controller and monitoring program. The scale model with the upper rotatable blades is installed within the basin by means of three mooring lines, and its translational and rotational motions are detected by 3-axis inclinometer and accelerometers and gyroscope. The detected motion signals are processed using a real-time controller CompactRIO to calculate the acceleration and tilting angle of nacelle and the attitude of floating platform. The developed monitoring system is demonstrated and validated by measuring and evaluating the time histories and trajectories of nacelle and platform motions for three different wind velocities and for eight different fairlead positions.

Control System Development of 750kW Direct Drive Wind Turbine Generator (750kw급 직접 구동형 풍력 발전기의 제어 시스템 개발)

  • Kim, Dae-Hyun;Hwang, Jin-Su;Lee, Seung-Hun;Jang, Sung-Tae;Ryu, Ji-Yoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.55-58
    • /
    • 2005
  • 풍력발전기에 있어서 보호 및 제어 시스템은 그 효율, 성능, 안전 및 수명까지도 영향을 미칠 수 있는 중요한 구성요소이다 따라서 제어 시스템은 풍력발전기의 최대 효율 및 가동률을 확보하여야 하며 풍력발전기에 문제가 발생할 경우 즉시 가동을 정지할 수 있도록 안전성을 확보할 수 있도록 설계되어야 한다. 본 연구에서는 "750kw급 Gearless형 풍력발전시스템 개발" 과제의 일환으로 수행되었던 풍력발전기용 제어시스템의 설계 및 제작 과정과 상용제품으로서의 본 제어 시스템을 소개하고자 한다.

  • PDF

Design and Verification of Disturbace Observer based Controller for Windturbine with Two Cooperative Generators (두 대의 협력적인 발전기를 갖는 풍력발전기의 외란관측기 기반 제어기의 설계 및 검증)

  • Lee, Kook-Sun;Cho, Whang;Back, Ju-Hoon;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.301-308
    • /
    • 2017
  • This paper proposes a disturbance observer based controller design method for generating and yawing control of windturbine with two cooperative generators. Windturbine system with two cooperative generators is a distinct structure in which the wind energy supplied by blade axis is converted into electrical energy by two cooperative generators. In this structure, two generators can be controlled independently and therefore they can generate power, simultaneously performing yawing control of nacelle without extra yawing mechanism by cooperatively controlling generating load in appropriate manner. Using this structural trait, this paper designs a disturbance observer based controller that enables the windturbine system with cooperative generators to generate and yaw stably, and verifies the performance of the controller experimentally by applying it to a small-scale windturbine system with the same structure.

Design of Power and Load Reduction Controller for a Medium-Capacity Wind Turbine (중형 풍력터빈의 출력 및 타워 하중저감 제어기 설계)

  • Kim, Kwansu;Paek, Insu;Kim, Cheol-Jin;Kim, Hyun-Gyu;Kim, Hyoung-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.1-12
    • /
    • 2016
  • A control algorithm for a 100 kW wind turbine is designed in this study. The wind turbine is operating as a variable speed variable pitch (VSVP) status. Also, this wind turbine is a permanent magnet synchronous generator (PMSG) Type. For the medium capacity wind turbine considered in this study, it was found that the optimum tip speed ratios to achieve the maximum power coefficients varied with wind speeds. Therefore a commercial blade element momentum theory and multi-body dynamics based program was implemented to consider the variation of aerodynamic coefficients with respect to Reynolds numbers and to find out the power and thrust coefficients with respect tip speed ratio and blade pitch angles. In the end a basic power controller was designed for below rated, transition and above rated regions, and a load reduction algorithm was designed to reduce tower vibration by the nacelle motion. As a result, damage equivalent Load (DEL) of tower fore-aft has been reduced by 32%. From dynamic simulations in the commercial program, the controller was found to work properly as designed. Experimental validation of the control algorithm will be done in the future.

Robust Adaptive Nonlinear Control for Tilt-Rotor UAV

  • Yun, Han-Soo;Ha, Cheol-Keun;Kim, Byoung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.57-62
    • /
    • 2004
  • This paper deals with a waypoint trajectory following problem for the tilt-rotor UAV under development in Korea (TR-KUAV). In this problem, dynamic model inversion based on the linearized model and Sigma-Phi neural network with adaptive weight update are involved to realize the waypoint following algorithm for the vehicle in the helicopter flight mode (nacelle angle=0 deg). This algorithms consists of two main parts: outer-loop system as a command generator and inner-loop system as stabilizing controller. In this waypoint following problem, the position information in the inertial axis is given to the outer-loop system. From this information, Attitude Command/Attitude Hold logic in the longitudinal channel and Rate Command/Attitude Hold logic in the lateral channel are realized in the inner-loop part of the overall structure of the waypoint following algorithm. The nonlinear simulation based on the TR-KUAV is carried out to evaluate the stability and performance of the algorithm. From the numerical simulation results, the algorithm shows very good tracking performance of passing the waypoints given. Especially, it is observed that ACAH/RCAH logic in the inner-loop has the satisfactory performance due to adaptive neural network in spite of the model error coming from the linear model based inversion.

  • PDF