• Title/Summary/Keyword: NaCl water

Search Result 1,371, Processing Time 0.038 seconds

Effects of Different NaCl Concentrations on the Growth of Suaedu asparagoides, Suaeda maritima, and Salicornia herbacea (염분농도에 따른 나문재, 해홍나물, 퉁퉁마디의 생장반응)

  • Nam, Yu-Kyeong;Baik, Jung-Ae;Chiang, Mae-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.349-353
    • /
    • 2007
  • To investigate the effect of NaCl concentration on plant growth in three halophytes, Suaeda asparagoides, Suaeda maritima, and Salicornia herbacea, and to select afforestation species for reclaimed land along the shore, this experiment was conducted by ebb and flow system added fertilize of 1/2 Hoagland solution and halophytes were cultured for 4 month treated by 0, 50, 200, 400 mM NaCl, respectively. The shoot height was increased with 0 and 50 mM NaCl treatment of Suaeda asparagoides and Suaeda maritima and decreased with 200, 400 mM NaCl treatment, whereas them of Salicornia herbacea was increased by 200 mM NaCl treatment. The higher NaCl concentrations, the lower fresh and dry weight in Suaeda asparagoides. In case Suaeda maritima and Salicornia herbacea, fresh and dry weight was increased by 200 mM NaCl treatment. The higher NaCl concentrations, the lower chlorophyll contents in shoot of all treatment. The proline contents of 400 mM treatment in Suaeda maritima was higher than them of other treatments. The shoot water potential was generally lower in 50mM as compared to the control in Suaeda asparagoides, Suaeda maritima, significantly.

Effect of Deamidation with Neutrase on the Solubility of BSA, Egg Albumin, and Soy Protein Isolate (BSA, Egg Albumin, 분리대두단백질의 용해도에 미치는 Neutrase에 의한 탈아미드 효과)

  • 강영주;김효선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.811-815
    • /
    • 1995
  • Effect of deamidation with Neutrase on the solubility of bovin serum albumin(BSA), egg albumin(EA), soy protein isolate(SPI) was investigated. Solubility of deamidated BSA in distilled water was decreased from 98% to 83% against native BSA at pH 4~8, minimum solubility of deamidated BSA was pH 6. Solubilities of native BSA and deamidated BSA in 0.2M NaCl solution were shown 100% as compared greately decreasing both solubilities in 1.0M NaCl at acidic pH. According to deamidation, solubility of EA in distilled water was increased below pH 4 and above pH 6, while solubility of EA in NaCl solution was decreased by deamidation at acidic pH. Solubility of SPI in distilled water was greately increased by deamidation at overall pH, deamidation was increased solubility in NaCl solution above pH 5. There was, however, no difference on solubility by deamidation below pH 5.

  • PDF

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber-Epoxy Composite Board

  • SETYAYUNITA, Tamaryska;WIDYORINI, Ragil;MARSOEM, Sri Nugroho;IRAWATI, Denny
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.93-103
    • /
    • 2022
  • Currently, biofibers are used as a reinforcement in polymer composites for structural elements and construction materials instead of the synthetic fibers which cause environmental problems and are expensive. One of the chemicals with a pH close to neutral that can be potentially used as a modified fiber material is sodium chloride (NaCl). Therefore, this study aims to investigate the characteristics of a composite board made from NaCl-treated kenaf fiber. A completely randomized design method was used with consideration of two factors: the content of NaCl in the treatment solution (1 wt%, 3 wt%, and 5 wt%) and the duration of immersion of fibers in the solution (1 h, 2 h, and 3 h). The NaCl treatment was conducted by soaking the fibers in the solution for different durations. The fibers were then rinsed with water until the pH of the water reached 7 and subsequently dried inside an oven at 80℃ for 6 h. Kenaf fiber and epoxy were mixed manually with the total loading of 20 wt% based on the dry weight of the fiber. Physical and mechanical properties of the fibers were then evaluated based on JIS A 5908 particleboard standards. The results showed that increasing NaCl content in the fiber treatment solution can increase the physical and mechanical properties of the composite board. The properties of fibers treated with 5 wt% NaCl for 3 h were superior with a modulus of elasticity of 2.085 GPa, modulus of rupture of 19.77 MPa, internal bonding of 1.8 MPa, thickness swelling of 3%, and water absorption of 10.9%. The contact angle of untreated kenaf fibers was 104°, which increased to 80° and 73° on treatment with 1 wt% and 5 wt% NaCl for 3 h, respectively.

Studies on the Functional Properties of Sesame and Perilla Protein Isolate (참깨와 들깨 단백질의 기능성에 관한 연구)

  • Park, Hyun-Sook;Ahn, Bin;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.350-356
    • /
    • 1990
  • Functional properties such as nitrogen solubility, emulsifying property, foaming property, and water and oil absorption of sesame and perilla protein isolates were determined at pH range of 2-10 and ionic strength of 0-0.5M NaCl. Nitrogen solubility of protein isolates in distilled water showed minimum value at pH6.0 in sesame and at pH 4.0 in perilla and soybean protein isolates, and significantly increased above pH 8.0 in all samples. Addition of 0.1M NaCl solution increased nitrogen solubility, however, decreased in 0.5M NaCl solution. Emulsion activities of all the protein isolates showed minimum value at pH 4.0 and increased in 0.1M NaCl solutions while it was reduced in 0.5M NaCl solutions. The perilla protein isolate showed higher emulsion activity than that of soybean and sesame protein isolates at above pH 6.0. Foaming capacities of sesame and perilla protein isolates were lower than soybean protein isolate and generally all of the samples showed higher profiles in NaCl solutions. The foaming stability of soybean isolate decreased abruptly in 10min, while it was slowly decreased for sesame and perilla isolates during initial 30 min. Oil absorption capacity of perilla protein isolate was higher than that of sesame and soybean protein isolates. Water absorption capacity was similar among the three samples studied.

  • PDF

Physicochemical properties analysis of bamboo salt on chicken emulsion sausage

  • Lee, Sol-Hee;Kim, Gye-Woong;Kim, Hack-Youn
    • Journal of Animal Science and Technology
    • /
    • v.62 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • Quality characteristics of chicken emulsion sausage manufactured with various levels of NaCl and 9 times heated bamboo salt (0.3%, 0.6%, 0.9%, and 1.2% respectively) were examined. The pH value of chicken emulsion sausage was increase tendency with increasing amount of bamboo salt, on the contrary in case of NaCl sample were decrease tendency with increasing amount of NaCl. Both before and after heating, redness of chicken emulsion sausage with bamboo salt treatments were upward trend with increasing amount of bamboo salt. water holding capacity (WHC) of 1.2% NaCl sample was significantly higher than 0.3%-0.9% (p < 0.05), but 0.9%, 1.2% bamboo salt samples were significantly higher than 0.3, 0.6 % (p < 0.05). Water loss of 1.2% NaCl and 0.9% bamboo salt samples were significantly lower than other treatment (p < 0.05). Protein solubility values significantly increased amount of bamboo salt and NaCl (p < 0.05), and samples of 0.9% NaCl and 0.6% bamboo salt values show similar values. Cooking yield of samples were increased tendency with increasing amount of NaCl and bamboo salt. Also viscosity values of sample containing 1.2% bamboo salt sample showed higher viscosity than other treatments. These results show that containing 1.2% NaCl chicken emulsion sausage and 0.9% bamboo salt chicken emulsion sausage were similar physicochemical properties. Therefore, bamboo salt is suitable for manufacturing chicken emulsion sausage.

Germination and Growth Response of Spergularia marina Griseb by Salt Concentration (갯개미자리(Spergularia marina Griseb)의 염농도에 따른 발아 및 생장 반응)

  • Jeong, Jae-Hyeok;Kim, Sun;Lee, Jang-Hee;Choi, Weon-Young;Lee, Kyung-Bo;Cho, Kwang-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.139-143
    • /
    • 2014
  • This study was conducted to investigate the germination and growth response by Salinities of Spergularia marina Griseb grown in the western coastal region in South Korea. The germination was investigated for 10 days at temperature $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$ in order to examine the germination of Spergularia marina Griseb by NaCl concentration 0.0, 0.3, 0.5, 1.0, 2.0%. The germination of NaCl concentration 0.0~1.0% was 90% over at $15^{\circ}C$ treatment, but the germination of NaCl concentration 2.0% was 0% at all temperature treatments. To identify the growth response of Spergularia marina Griseb according to the salinity, Spergularia marina Griseb was cultivated for 8 weeks in Hoagland culture medium and sea water. In nutrient solution culture, growth was best in NaCl 50mM among 0~400 mM concentrations and in 0, 12.5, 25, 50, 100% of sea water, growth was best in 12.5% (dilution ratio with fresh water) treatment. Spergularia marina Griseb's inorganic component contents according to salinity showed that $Na^+$ content increased, but contents of $K^+$, $Ca^+$, $Mg^+$ decreased. As a result, appropriate condition for Spergularia marina Griseb's germination is considered to be maintained at $15^{\circ}C$ and in less than NaCl 1.0% of salinity. When nutrient solution culture, NaCl 0.3% of treatment level is considered to be the optimum salinity.

Effects of Sodium Fluoride on the Water Transport in Leaves of Barley and Rice under Salt Stress in the Light

  • Hwang, Hong-Jin;Oh, Kwang-Hoon;Park, Phun-Bum;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.25-28
    • /
    • 2004
  • The kinetics of the loss of leaf fresh weight during incubation of barley and rice leaves in 9% or 15% NaCl solutions were biphasic, indicating the existence of a controlling mechanism for water transport. The first rapid phases reached their plateaus within 1 and 2 h in the case of rice and barley leaves, respectively. When barley leaves were fed with sodium fluoride, an inhibitor of phosphatase inhibitor, through their epicotyls for 3 h in darkness, prior to the treatment of NaCl, the biphasic pattern shown during NaCl treatment was disappeared resulting in linear decreases in the relative fresh weights. The results suggest that NaF accelerates salt-induced water efflux from plant cells, possibly by inhibiting the protection mechanism that may act in NaF-untreated leaves. The linear water loss can be explained in terms of phosphorylation of aquaporin by blocking its dephosphorylation in the presence of the phosphatase inhibitor to keep aquaporin in a phosphorylated form. However, the effect of NaF shown in barley leaves were not observed in rice. These results suggest that the regulation of water transport depends on plant species, and the mechanism for the controlling water transport in rice is different from that of barley.

  • PDF

Current characteristics of Cu/NaCl electrolyte/Zn electrochemical cell (구리/NaCl 전해질/아연 전기화학전지의 전류특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1626-1631
    • /
    • 2010
  • The characteristics of electric current for the voltaic cell are important for electric power applications. In this paper, an electrical equivalent model consist of three resisters and a capacitance for the Cu/NaCl solution/Zn electrochemical cell is proposed. The capacitance which exists in the Zn electrode/electrolytic interface increased according to Zn electrode area, but cannot affect almost in electric current. Complex impedance plot was used to analysis the interface effect for Zn/electrolyte. This result shows that the interface is similar with the electric transmission line. The short current measurements were conducted to investigate the effects of hydrogen peroxide, the watery sulfuric acid and NaCl aqueous solution. As the hydrogen peroxide increased, the electric current increased because the hydrogen gas being converted with the water. Also electric current increased significantly with increase of the hydrogen ion with the watery sulfuric acid and increased with increase of $Na^+$ ion and $Cl^-$ion in the NaCl electrolyte.

The effect on photosynthesis and osmotic regulation in Beta vulgaris L. var. Flavescens DC. by salt stress

  • Choi, Deok-Gyun;Hwang, Jeong-Sook;Choi, Sung-Chul;Lim, Sung-Hwan;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.81-90
    • /
    • 2016
  • This study was to investigate the effect of salt stress on physiological characteristics such as plant growth, photosynthesis, solutes related to osmoregulation of Beta vulgaris. A significant increase of dry weight was observed in 50 mM and 100 mM NaCl. The contents of Chl a, b and carotenoid were lower in NaCl treatments than the control. On 14 day after NaCl treatment, photosynthetic rate (PN), the transpiration rate (E) and stomatal conductance of CO2 (gs) were reduced by NaCl treatment. On 28 day after NaCl treatment, the significant reduction in gs and E was shown in NaCl 200 mM. However, PN and water use efficiency (WUE) in all NaCl treatments showed higher value than that of control. Total ion contents (TIC) and osmolality were higher than the control. On 14 day after treatment, the contents of proline (Pro) increased significantly in 200 mM and 300 mM NaCl concentration compared with control, whereas on 28 day in all treatments it was lower than that of the control. The contents of glycine betaine (GB) increased with the increase of NaCl concentration. The contents of Na+, Cl-, GB, osmolality and TIC increased with the increase of NaCl concentrations. These results suggested that under severe NaCl stress conditions, NaCl treatment did not induce photochemical inhibition on fluorescence in the leaves of B. vulgaris, but the reduction of chlorophyll contents was related in a decrease in leaf production. Furthermore, increased GB as well as Na+ and Cl- contents resulted in a increase of osmolality, which can help to overcome NaCl stress.

Effect of electrolyte on Bow-tie Water tree (Electrolyte 가 Bow-tie 형 수트리에 미치는 영향)

  • Kang, T.O.;Yang, W.Y.;Kim, K.S.;Chun, C.O.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1550-1552
    • /
    • 1994
  • In order to investigate the effect of electrolyte solutions on the activities of bow-tie water trees in XLPE insulated power cable, we have tried to observe the characteristics on water treeing ( bow-tie type ) using several electrolyte solutions such as $CH_3COOH$, $MgCl_2$,HCl and NaCl solution and tap water. Bow-tie tree density in $CH_3COOH$ and $MgCl_2$ solution was higher than in any other solution, and the growth of tree was stimulated in NaCl and $CH_3COOH$ solution, and diffusion of bow-tie trees into insulation in $MgCl_2$, HCl and NaCl solutions was faster than in $CH_3COOH$ solution and water. Also, although the increase of applied voltage caused bow-tie tree density to be high, it didn't affect the growth of tree maximum length noticeably.

  • PDF