• Title/Summary/Keyword: NaCl concentration

Search Result 1,592, Processing Time 0.026 seconds

Analysis of the Phase Change Temperatures and the Latent Heat Characteristics of $H_2O$-NaCl Mixtures for the Cold thermal Energy Storage (냉축열을 위한 $H_2O$-NaCl 혼합물의 상변화 온도와 잠열 특성분석)

  • Song, H.K.;Ro, J.G.
    • Solar Energy
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 1999
  • In this study $H_2O$-NaCl mixture was selected as a cold thermal storage material and its phase change temperature($liquid{\Leftrightarrow}solid$) was controlled with the molar concentration of NaCl. Ion dipole interaction mechanism and the fusion and crystallization structure of $H_2O$-NaCl were visualized with the low and high concentration of NaCl in the heating and cooling processes. In this study, the original cause of the appearance of two steps phase change period in heating and cooing processes were found by the visualization of the ion dipole interaction mechanism of $H_2O$-NaCl, and the theoretical equation of the phase change temperature variation in the NaCl high molar concentration was rearranged.

  • PDF

Effect of NaCl Concentration on the Emulsifying Properties of Myofibrilla Protein in the Soybean Oil and Fish Oil Emulsion

  • Jo, Yeon-Ji;Kwon, Yun-Joong;Min, Sang-Gi;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.315-321
    • /
    • 2015
  • The aim of the present work was to investigate the effect of NaCl concentration on the emulsifying and rheological properties of porcine myofibrillar protein (MF)-stabilized soybean oil and fish oil emulsion (SO-EMs and FO-EMs). Emulsions (EMs) were prepared from 1% MF with 10% SO or FO at various NaCl concentration (0-0.5 M). The emulsifying ability index (EAI) of the EMs increased with increasing NaCl concentration for both oil types. Conversely, increasing NaCl manifested decrease in the emulsion stability index (ESI). In addition, creaming index (CI) also increased with NaCl concentration. From the microscopic observation, droplets of the EMs were more aggregated at relatively higher NaCl concentrations, especially for FO-EMs. All EMs had a gel-like structure owing to G' > G" from the rheological analysis. Comparing the oil types, the emulsifying capacity of SO-EMs was more stable than that of FO-EMs at all NaCl concentrations as determined from the CI value and microscopic observation. Therefore, it can be concluded that SO-EMs and FO-EMs are more stable at relatively lower concentrations of NaCl. In addition, the dispersed stability of SO-EMs was better than that of FO-EMs at the same concentration of NaCl.

Study on the Crevice Corrosion of Mild Steel in Fluid Environment (유체환경 중에서 연강재의 간극부식에 관한 연구)

  • Lim, Uh Job;Yun, Byoung Du
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.373-378
    • /
    • 2000
  • The crevice corrosion of local corrosion occur when the gap exist on metal surface. This crevice corrosion happen to region such as flange of pipe, contact part of casing, under gasket and packing, between valve disk and seat of pump etc. Especially The crevice corrosion of mild steel(SS 400) get serious. This paper was studied on the crevice corrosion of SS 400 in fluid environment. In $0\%,\;2\%,\;3.5\%,\;5\% NaCl$ solution, the aspect of the crevice corrosion and polarization behavior under the crevice corrosion was investigated. And Weight loss rate of SS 400 with crevice and non-crevice was measured according to the NaCl concentration. The main results obtained are as follows : 1) Under crevice corrosion, the corrosion potential become less noble as the concentration of NaCl solution increased. 2) The current density under open circuit potential was high drained as concentration of NaCl solution increased by $3.5\%$ but the concentration increased over $3.5\%$, the current density was low drained. 3) The weight loss rate of SS 400 was increased as concentration of NaCl solution Increased by $3.5\%$, but the concentration increased over $3.5\%$, that of SS 400 was decreased. 4) Effect of oxygen for crevice corrosion in the concentration of $3.5\%$ NaCl solution become sensitive than that $0\%$ NaCl solution.

  • PDF

Measurements of the Diamagnetic Susceptibility of NaCl Aqueous Solution

  • Lee, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.669-675
    • /
    • 2003
  • Using a SQUID magnetometer, the diamagnetic susceptibility of NaCl aqueous solution was measured with high accuracy in a magnetic field of up to 6 Tat 25$\pm0.05^{\circ}C$. The NaCl concentrations adopted in this experiment were 0 (water), 7.5, 15, 23, 26.2, 26.6 and 100% (crystal) with the concentration error of $\pm$0.04%. Experimental data was compared with the calculated value of susceptibility derived from dependence of the vapor pressure on NaCl concentration As a result, our measured value was almost in accordance with the calculated value. It was found that the diamagnetic susceptibility shows a decrease of approximately 10% within the saturated concentration (26.2%) and that the susceptibility is one of the effective cause for the concentration dependence in the gas-liquid interface deformation of the NaCl solution.

Study on the Characteristics of Crevice Corrosion Prevention of SS 400 in Marine Environment (해양환경 중에서 SS400강재의 간극부식방지 특성에 관한 연구)

  • 임우조;정기철;구영필;윤병두
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.152-157
    • /
    • 2001
  • This paper was studied on the characteristics of crevice corrosion prevention of SS 400 in marine environment. In NaCl solution, polarization behavior under the crevice corrosion was investigated. And Weight loss rate of SS 400 applied cathodic protection and non cathodic protection was measured according to the NaCl concentration. The main results obtained are as follows : The weight loss rate of Al-alloy galvanic anode was increased as the concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5%, that of Al-alloy galvanic anode become decreased. The protective potential of SS 400 used Al-alloy galvanic anode becomes more cathodic polarization with increasing concentration of NaCl solution. Effects of oxygen on the weight loss rate of Al-alloy sacrificial anode for cathodic protection as the concentration of 3.5% NaCl solution become sensitive than that of 0% NaCl solution.

  • PDF

Effect of NaCl Stress on the Growth, Photosynthetic Rate and Mineral Uptake of Tomato, Red Pepper and Egg Plant in Pot Culture (NaCl 스트레스가 토마토, 고추, 가지의 생육, 광합성 속도 및 무기양분 흡수에 미치는 영향)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.133-138
    • /
    • 2002
  • This study was conducted to investigate the effece of NaCl concentrations on the growth, photosynthetic rate and mineral uptake of tomato, red pepper, and egg Plant in Pot culture. The growth such as plant height, plant fresh and dry weight, root fresh and dry weight and dried matter rate was decreased as NaCl concentrations were increased. Specially, the growth inhibition of tomato and egg plant was shown at over 40 mM NaCl, and that of red pepper at 20 mM NaCl. Yield of tomato and egg Plant was reduced at over 20 U NaCl, that of red pepper at over 10 mM NaCl. Yield reduction was affected by the number of fruit at low concentration and by mean weight and number of fruit at high concentration. Photosynthetic rate, water potential and stomatal conductance were decreased as NaCl concentrations were increased. The higher the concentration of NaCl, the lower the mineral uptake such as T-N, P, K, Ca and Mg, however, the higher the content of Na and Cl.

Salt Tolerance of Various Native Plants under Salt Stress (여러 자생식물의 내염성 정도 구명)

  • Shim, Myung Syun;Kim, Young Jae;Lee, Chung Hee;Shin, Chang Ho
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.478-484
    • /
    • 2012
  • This study was carried out to investigate the plant growth and ion absorbance balance of various native plants affected by the NaCl concentration (0, 100, 200, 300 mM). Carex blepharicarpa, Carex lenta, Carex matsumarae, Carex sendaica, Iris pseudacorus L., Sedum oryzifolium Makino, Sedum polytrichoides Hemsl., and Typha angustifolia L. were used in this experiment. Carex blepharicarpa, Carex lenta, Carex matsumarae, and Iris pseudacorus L. were tolerant of salinity at the NaCl concentration of 200 mM. The root growth of Carex sendaica and Typha angustifolia L. was suppressed at the NaCl concentration of 100 mM, expecially the root growth responded more sensitively than the upper growth to salinity. The K absorbance of Carex sendaica decreased according to the NaCl application, and the Na/K rate value was 3 at the NaCl concentration of 300 mM. The K, Ca, and Mg absorbance of Typha angustifolia L. decreased at the NaCl concentration of 200~300 mM, and the Na/K rate value was 0.8 at the NaCl concentration of 300 mM. The plant growth of Sedum oryzifolium Makino and Sedum polytrichoides Hemsl. was suppressed at the NaCl concentration of 100~200 mM. The K, Ca, and Mg absorbance of Sedum oryzifolium Makino decreased at the NaCl concentration of 200~300 mM, and Sedum polytrichoides Hemsl. was unaffected by the NaCl application. The Na/K value was 1 in both plants. Therefore, Carex blepharicarpa, Carex lenta, Carex matsumarae, and Iris pseudacorus L. were tolerant plants of salinity at the NaCl concentration of 200 mM considering the plant growth and ion absorbance balance. Especially, the Carex plants were expected to expanding use by the proven tolerance of salinity. The root growth of Carex sendaica, Sedum oryzifolium Makino, Sedum polytrichoides Hemsl., and Typha angustifolia L., was suppressed at the NaCl concentration of 100 mM, but there was no distinct tendency of ion absorbance in leaves according to the NaCl application.

Effect of High Concentrations of Sodium or Chloride Salts in Soil on the Growth of and Mineral Uptake by Tomatoes (토양에의 고농도 Na 및 Cl 염류가 토마토의 생육 및 무기성분 흡수에 미치는 영향)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.121-126
    • /
    • 2002
  • This study was conducted to investigate the effect of high concentration of sodium salts and chlorides in soil on the growth of tomato and the uptake of minerals. The growth inhibition rates of plant height and dry weight were different depending on salts, but they were not related to the electric conductivities (EC) and acidities (pH) in the soil solution. The orders of growth inhibition were Cl, SO$_4$, CO$_3$, PO$_4$>NO$_3$ in the sodium salts series, and Na, K, Mg, NH$_4$>Ca in the chlorides. The growth inhibition rates of the sodium salts series tended to be larger than those of the chloride series. Yield was lower 30%~10% in the sodium salt and chloride series than in the control. Chlorophyll content, photosynthetic rate and stomatal conductance were lower in the sodium salts and chloride series than in the control. Mineral concentration was lower in sodium salts and chlorides than in control. The nitrate absorption was inhibited in all salts except for NaNO$_3$ and NH$_4$Cl, and specially in NaCl and Na$_2$SO$_4$ treatments of the sodium salts and in KCl treatment of chloride series. K concentration was reduced NaCl and Na$_2$SO$_4$ treatments compared with the other salts. In the sodium salt series, calcium and magnesium concentration were decreased antagonistically when sodium concentration was increased.

Electrogeneration of Hypochlorite Ions using a Dimensionally Stable Anode-Type (Ti/PtPd(10%)Ox) Electrode

  • Teresa Zayas;Miriam Vega;Guillermo Soriano-Moro;Anabella Handal;Miguel Morales;Leonardo Salgado
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.268-275
    • /
    • 2024
  • The study examined the electrogeneration of hypochlorite ions (ClO-) via electrolysis of aqueous NaCl solutions using a dimensionally stable anode-type (DSA-type) electrode based on platinum and palladium oxides supported on titanium mesh (Ti/PtPd(10%)Ox). The electrogenerated ClO- was quantified on the basis of the absorption band at 292 nm (Aλ = 292) of the UV-Vis spectrum. The effect of initial pH, concentration of NaCl, cell potential difference and electrolysis time were investigated in this study. The results showed that the electrolysis of aqueous NaCl solutions increases the solution pH up to high values (≥ 8.0) that favor the formation of ClO- over chlorine or hypochlorous acid. The hypochlorite concentration increases significantly at pH values > 7.0 and shows a linear trend with increasing NaCl concentration and with increasing cell potential difference. When the cell potential and NaCl concentration are held constant, the maximum hypochlorite value during electrolysis depends on both the cell potential and NaCl concentration. The Ti/PtPd(10%)Ox anode favors the production of hypochlorite ions, making this anode a promising material for use in electrochemical oxidation of wastewater via an indirect mechanism.

Varietal Difference in Salinity Tolerance during Germination Stage of Rice

  • Lee, Kang-Soo;Choi, Sun-Young;Choi, Won-Yul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.11-14
    • /
    • 1998
  • This study was conducted to find out a desirable screening condition for the salinity tolerance in germination of rice. Seeds of 33 rice varieties were tested in NaCl solutions with various concentration levels. The germination percentage had a decreasing tendency with increasing NaCl concentration and inhibition concentration of 50% germination was 320mM. Standard deviation of germination percentage was highest (28.6) under 300mM NaCl. There was a highly significant correlation between the 50% germination concentration and the germination percentage at 20th day after seeding in 300mM NaCl. Also in 300mM NaCl, the germination percentage at 20th day after seeding was significantly correlated with the germination percentage at the 6th day after seeding. The salinity tolerance on the basis of germination percentage at 6th day after seeding in 300mM NaCl, was strong in 'Hyangnambyeo', 'Ilmibyeo', 'Kancheogbyeo', and 'Namwonbyeo', while weak in 'Ansanbyeo', 'Odaebyeo', 'Nonganbyeo', 'Dasanbyeo', and 'Namcheonbyeo'.

  • PDF