• Title/Summary/Keyword: Na-cellulose I

Search Result 46, Processing Time 0.022 seconds

Mercerization of Wood: Formation and Reversibility of Na-cellulose I in Reaction Wood

  • Kim, Nam-Hun;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • The phase transformation from cellulose I into cellulose II in woods by way of Na-cellulose I was examined by x-ray diffraction analysis.The formation of Na-cellulose I in woods increased with the increase of treating time in alkali solution. When compression wood was treated with 20% NaOH solution at room temperature for 1 day, the x-ray diagram showed only Na-cellulose I. On the other hand, the x-ray diagram of tension wood showed a mixture of cellulose I and Na-cellulose I. Cellulose I of tension wood could not be transformed completely into Na-cellulose I even after 10-day treatment, but was transformed into Na-cellulose I after 30-day treatment. Na-cellulose I of compression and tension woods was converted to the cellulose I pattern and the mixture of cellulose I and cellulose II, respectively, after washing with water and drying at 20℃. Cellulose I regenerated from Na-cellulose I in wood could not be converted to cellulose II by delignification. Thus, it revealed that the delignification of the alkali-treated wood did not affect their cellulose structures. From the results, therefore, it can be concluded that lignin in woods prevents the formation of the stable Na-cellulose I and the conversion from cellulose I to cellulose II. This means that the conversion of chain polarity of wood cellulose hardly occurs during mercerization because cellulose microfibrils are fixed by lignin which not to be intermingled.

Formation Conditions of Na-cellulose II with Three Fold Helix (3회나선축을 갖는 Na-cellulose II의 형성조건에 관한 고찰)

  • Kim, Nam-Hun;Lee, Myoung-Ku
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.18-23
    • /
    • 1999
  • The formation conditions of Na-cellulose II with three fold helix were investigated by an x-ray diffraction method. Na-cellulose II was formed through Na-cellulose I. It seems that the concentration of sodium hydroxide in Na-cellulose II is higher than both those of Na-cellulose I and Na-cellulose III. Na-cellulose II was formed well by different rinsing and drying methods even though the sample treatment was carried out in very short periods of time. Metal-complexed Na-cellulose swollen in the mixture of $Cu(OH)_2$ and sodium hydroxide is stable in wet state, and changed to a different polymorph by drying.

  • PDF

X-ray and Electron Diffraction Study of Cellulose Crystal Structures (X선 및 전자선회절법에 의한 천연셀룰로오스의 결정구조 해석)

  • Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.72-79
    • /
    • 1996
  • Cellulose I에서 Cellulose II로의 결정변태기구를 X선 및 전자선 회절법과 현미경적 방법을 이용하여 구명하였다. X선 회절 결과, Na-cellulose I을 고온에서 수세할 경우 Cellulose I과 Cellulose II의 혼합형 회절도가, 저온에서 수세할 경우 Na-cellulose IV의 회절도가 얻어졌다. 전자선회절 결과, 고온수세의 시료는 Cellulose I과 Cellulose II의 혼합형이 저온수세의 시료는 Cellulose II의 회절도가 얻어졌다. 또한 고온수세 시료의 전자선회절도로부터 섬유벽의 내측부가 외측부보다 재생 Cellulose I의 양이 많은 것이 확인되었다. 따라서 알칼리 팽윤시 섬유벽내에는 불완전한 팽윤이 발생하는데 그 정도는 내측부가 더욱 심한 것으로 생각된다. 이때 형성되는 불완전한 Na-cellulose I 은 고온 수세의 경우는 탈수에 의해 Cellulose I로, 저온수세의 경우는 수화에 의해 Cellulose II로 변태되지만 완전히 팽윤된 Na-cellulose I은 Cellulose I로 재생될 수 없는 것으로 생각된다. 현미경적 실험결과, mercerization과정에서 cellulose 분자쇄의 packing이나 conformation의 변화와 관련하여 microfibril 의 흐트러짐은 발생하지 않는 것으로 생각되었다.

  • PDF

A Study of Recycle of Waste Wood After Cultivating Oak Mushroom (II) - On the Structure of Cellulose Crystal Transformation of the Waste Wood - (표고버섯골목의 재활용에 관한 연구 (II) - 폐골목 세포벽 중의 셀룰로오스 결정의 변태구조 -)

  • Kim, Nam-Hun;Lee, Won-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.1-7
    • /
    • 1995
  • The crystal transformation from cellulose I to cellulose II during alkaline swelling of waste wood, which has been used for cultivating oak mushroom(Cortinellus edodes (Berk.) Ito et Imai), was investigated and compared to that of normal wood by a series of X-ray diffraction analysis. When the sapwood of cultivated wood was treated with 20% NaOH solution for 2 hours, the cellulose I can be easily transformed into Na-cellulose I than normal wood or heartwood of cultivated wood. Certainly the formation of Na-cellulose in wood is proportional to alkali swelling duration, and the formation of cultivated sapwood was faster than that of the other woods. Cellulose I in the sapwood of cultivated wood was easily transformed into cellulose II during mercerization, but the sapwood of normal wood and the heartwood of cultivated wood hardly converted to cellulose II. Namely, most of Na-cellulose I in normal wood can be reconverted to cellulose I in the process of washing and drying. Therefore, it can be concluded from this study that in cell wall lignin and hemicellulose can prevent the alkaline swelling of cellulose in wood and the transformation from cellulose I to cellulose II as well.

  • PDF

Morphological and Physicochemical Changes of NBKP by Alkali Pretreatment (알카리 전처리에 의한 NBKP의 형태학적 및 이화학적 변화)

  • Mun, Sung-Phil;Jang, Min-Hwan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.58-64
    • /
    • 2009
  • This study was carried out to prepare high porosity pulp for oil and air filter media from commercial grade NBKP with 6 - 20% NaOH treatment. The fiber width of NBKP remarkably decreased by NaOH pretreatment. The air permeability of the test sheet prepared from alkali-pretreated NBKP increased with increasing NaOH concentration up to 15%. The burst factor was greatly decreased by alkali pretreatment. By 15 - 20% NaOH pretreatment of NBKP, it could be possible to prepare a high porosity pulp. It seems that the high porosity of the pulp was due to a strong swelling and a great change of the cellulose crystalline lattice from cellulose I to cellulose II with NaOH treatment of NBKP. The study suggested that alkali- pretreated NBKP could be used for manufacturing oil and air filter media.

Fine Structure and Physical Properties of Cotton Fibers and their Fabrics Treated with Liquid Ammonia, NaOH, and NaOH/Liquid Ammonia (액체암모니아, 수산화나트륨, 수산화나트륨/액체암모니아 처리한 면의 미세구조 및 물성)

  • 배소영;이문철;김홍성;이영희;김경환
    • Textile Coloration and Finishing
    • /
    • v.6 no.2
    • /
    • pp.47-54
    • /
    • 1994
  • Cotton fiber, NaOH-mercerized cotton fiber, cotton fabric, and NaOH-mercerized cotton fabric have been treated by liquid ammonia at -33.4$^{\circ}C$. The fine structures, bending properties, tensile strengthes, shrinkages for laundering, and wrinkle recoveries were studied. The treatment of cottons with liquid ammonia brought about the transition of crystal lattice ; transforming cellulose I crystal of original cotton to cellulose I and III crystal, and cellulose II crystal of mercerized cotton to cellulose II and III crystals. The degree of crystallinities were decreased in the order of liquid ammonia>NaOH/liquid ammonia>NaOH-treated cotton. However moisture regain and water absorbency for liquid ammonia-treated cotton were lower than that of NaOH-treated cotton because of a difference in swelling actions of the agents. It seems caused by intermicrofibrillar pores produced in swelling processes. The bending rigidity and bending hysteresis were decreased remarkly by liquid ammonia treatment. Therefore softness and dimensional stability were improved. The liquid amminia and NaOH/liquid ammonia-treated cottons moreover show excellent properties in tensile strength, anti-shrinkage for laundering, and wrinkle recovery.

  • PDF

Effect of Stretching on Cellulose Fiber Swelling in Alkali Aqueous Solutions (알칼리수용액안에서 셀룰로오스섬유가 팽윤할 때 장력이 미치는 영향)

  • 최철호
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.91-96
    • /
    • 1992
  • The crystalline character of NaOH and KOH-cellulose complex having different tension ratio was studied using X-ray diffraction analysis. Cellulose crystalline lattices in tension alkali treatment cotton were identified by measuring and indexing the 101, 101, and 002 reflections. According as alkali treatment tension ratio increased on, cellulose gave rise to the formation of I rather than cellulose II. It seemed that a part of the fine structure of cellulose increased orientation with antiparaell and parallel chain crystal structure. The high tension ratio alkali treatment cotton resulted in lower dye sorption and in higher breaking strength and crease recovery.

  • PDF

Production of Bacterial Cellulose and Its Modification (박테리아 셀룰로오스의 생산 및 개질)

  • 민두식;조남석;최태호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.3
    • /
    • pp.26-33
    • /
    • 1997
  • The bacterial celluloses are very different in its physical, chemical and morphological structures compared to wood cellulose. These fibers have many unique properties that are potentially and commercially beneficial. This study was aimed to elucidate the production of bacterial celluloses and to improve their physical properties by chemical pretreatment. Bacterial celluloses produced by static culture had gel-like pellicle structure. The pellicle thickness was increased with the increasing time, and its layer was about 1.8cm after one-month incubation. The pellicles extruded from the cells of Acetobacter had a non-crystalline structure during initial growing stages, gradually getting crystaliyzed with the incubation time elapse, and eventually fumed to the cellulose I crystals. Young's modulus of bacterial cellulose sheet was increased with increasing NaOH concentration, and resulted in the highest at 5% NaOH concentration. Similar results with NaClO3 pretreatment can be observed. Too concentrated alkali solutions induced the destruction of cellulose fibrils and changed the mechanical properties of the sheets. These alkaline pretreatment have removed non-cellulosic components(NCC) from the bacterial cellulose, and enhanced inter-abrillar bonding by direct close contact among cellulosic fibrils.

  • PDF

Recycling of Waste Cellulose Biomass - I. Synthesis of Cellulose Acetate and Mehtylcellulose from Waste Cellulose - (폐 cellulose계 biomass 자원의 재활용 - I. 목면 폐기물로부터 cellulose acetate 및 methyl cellulose 합성 -)

  • 이성구;최길영;김수진;정우영;조순채;이종문
    • Textile Coloration and Finishing
    • /
    • v.5 no.3
    • /
    • pp.221-228
    • /
    • 1993
  • Cellulose acetate and methyl cellulose were synthesized from waste cellulose in order to make waste knit on value added highly. Crystal waste cellulose by oxidation using $HIO_4$ and then acetylation was decrystallized. A degee of crystallinity was measured by X-ray diffraction and the structure was identified by FT-IR spetroscopy, respectively. Cellulose acetate was prepared from the reaction of decrystallized cellulose with acetic acid, cone-$H_{2}SO_{4}$ and acetic anhydride. Also, structure identification by FT-IR and a degree of crystallinity by X-ray diffraction were performed. DS of the synthesized cellulose acetate was 2.8 and viscosity average molecular weight was 238,000. Also, methyl cellulose was synthesized by treating cellulose acetate with NaOH and iodomethane. DS of the synthesized methyl cellulose was 3.0. Glucose unit with three hydroxy groups was all substituted by methoxyl groups. It was identified by FT-IR spectroscopy. Also, the thermal properties of the synthesized methyl cellulose were examined by DSC. It shewed two shewed melting peaks at 22$0^{\circ}C$ and 24$0^{\circ}C$ in the 2nd scan. It proved that DS=3.0 of methyl cellulose was a thermotropic liquid crystal.

  • PDF

Kinetics of Pyrolysis Degradation of on ${\alpha}-Cellulose$. - Effect of Acid Catalysts NaCl- (${\alpha}$-셀룰로오즈의 열분해에 관한 연구(I) - 산촉매 NaCl의 영향 -)

  • Na, S.D.;Hwang, J.H.;Choi, J.S.;Seul, S.D.;Sohn, J.E.
    • Elastomers and Composites
    • /
    • v.31 no.2
    • /
    • pp.122-129
    • /
    • 1996
  • The Thermal decomposition of the ${\alpha}-Cellulose$ and NaCl was studied using a thermal analysis technique in the steam of nitrogen gas with 30ml/min at various heating ranges from 4 to $20^{\circ}C/min$. The Derivative and Integral method used to be obtained values of activation energy of decomposition reaction. 1. The values of activation energy evaluated by Derivative and Intergral method were consistent with each other very well. 2. The maximum value of heat of decomposition evalated by DSC method was ${\alpha}-Cellulose/NaCl= 90/10$. 3. The thermogravimetric trace curve agreed with the theoretical equation.

  • PDF