• Title/Summary/Keyword: Na-P type zeolite

Search Result 24, Processing Time 0.029 seconds

Synthesis of Columnar Na-P Zeolite by Hydrothermal Process from Natural Zeolite of Korea (천연 Zeollte로부터 열수합성에 의한 주상 Na-P Zeolite합성)

  • Zhang, Yong-Seon;Jung, Pil-Kyun;Kim, Sang-Hyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.357-366
    • /
    • 2003
  • This study was conducted to develop n convenient and efficient granular type absorbent with high CEC from powdery zeolite, which is a waste produced while crushing the natural zeolite of Korea to get a particular particle size. The change of mineralogical characteristics during hydrothermal alternation of natural zeolite to Na-P zeolite in alkaline solution at various reaction times was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and total elemental analysis. The columnar aggregate of Na-P Zeolite was produced by calcinating the natural zeolite-charcoal extrudates of about 3 mm diameter. In 24 hours reaction, clinoptillonite, mordenite and feldspar in natural zeolite were disappeared by 3 N NaOH treatment, while Na-P Zeolite with spherical granular structure was newly detected by XRD. As increasing reaction time, Si/Al ratio in remaining solution was deceased. The CEC of the synthesized material increased more than 2 times compared with that of natural zeolite, although the diameter of Na-P zeolite were rather increased.

On Crystallization of Korean Bentonite Treated with Aqueous Sodium Hyeroxide Solution (국산 Bentonite의 수산화나트륨 수용액 처리에 의한 결정의 변화)

  • Myun Sup Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.47-52
    • /
    • 1973
  • Korean bentonite was treated with aqueous NaOH solution under the reaction conditions such as concentration of NaOH, 0.5-6N; ratio of $Na_{2}O$ to $SiO_2$, 1-4; reaction time, 2-30 days; reaction temperature, $70^{\circ}C-90^{\circ}C$. The products were examined by X-ray diffraction patterns. When it was treated with 2N NaOH at $70^{\circ}C$, zeolite species $P_1$ was formed with good yield. In higher concentration and at higher temperature than above, zeolite species $P_1$ was converted to hyeroxysodalite. Together with these crystals, some faujasite type zeolite, sodium A zeolite, mordenite type zeolite etc. was formed depending upon reaction conditions.

  • PDF

The Development of Absorption Elements of Ceramic Rotors for the Semiconductor Clean Room System (반도체 클린룸용 세라믹 Rotor 흡착제 개발)

  • 서동남;하종필;정미정;문인호;조상준;김익진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • The present invention relates to a absorption rotor for removed VOC(volatile organic compound) and humidity in semiconductor clean room system. A absorption rotor medium is made by NaX zeolite and TS-1 zeolite formed on a honeycomb matrix of ceramic papers. The crystallization of NaX zeolite was hydrothermal reaction, and NaX zeolite crystals of a uniform particle size of 5$\mu$m were synthesized that NaX zeolite seed crystals (2~3$\mu$m) added in a batch composition at levels of 3~15 wt$\%$. The seeding resulted in an increase in the fraction of large crystals compared with unseeded batches and successfully led to a uniform NaX zeolite crystal. The microporous zeolite-type titanosilicate(TS-1) was synthesized by different of the reactant solution pH. The pH range of reactant solution has been changed from 10.0 to 11.5 TS-1 zeolite (ETS-10), having a large pore(8~10 $\AA$), was synthesized at 10.4 of pH, since TS-1 zeolite (ETS-4), having a small pore(3~5$\AA$), was synthesized at 11.5 of pH.

  • PDF

Behavior of Na-A Type Zeolite from Melting Slag in its Hydrothermal Synthesis (용융(熔融)슬래그로부터 Na-A형(型) 제올라이트의 수열합성(水熱合成) 거동(擧動)에 대(對)한 고찰(考察))

  • Lee, Sung-Ki;Bae, In-Koon;Jang, Young-Nam;Chae, Soo-Chun;Ryu, Kyoung-Won
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.57-65
    • /
    • 2008
  • The behavior of Na-A type zeolite formed in hydrothermal synthesis of melting slag from municipal incineration ash has been investigated with varying synthesis time and $SiO_2/Al_2O_3$ ratio. Sodium silicate and sodium aluminate feed was found to initially form nuclei of Na-A type zeolite in the behavioral study of the reaction products with different synthesis times. As the synthesis time increased, the nuclei have grown to Na-A type zeolite crystals by reacting with $SiO_2$ and $Al_2O_3$ dissolved from the melting slag. The hydrothermal synthesis was completed in 10 hr in the $SiO_2/Al_2O_3$ ratio of 1.38 and after that time, the Na-A type zeolite formed was dissolved and transformed into hydroxysodalite. Only Na-A type zeolite was formed in the $SiO_2/Al_2O_3$ ratio ranging 0.80 to 1.96, whereas Na-P type zeolite as well as Na-A type was formed in the $SiO_2/Al2O_3$ ratio of 2.54.

Hydrothermal Synthesis of Smectite from Zeolite (제올라이트로부터 스멕타이트 수열 합성에 대한 연구)

  • Chae, Soo-Chun;Kim, You-Dong;Jang, Young-Nam;Bae, In-Kook;Ryu, Kyung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.301-310
    • /
    • 2006
  • Smectites were synthesized from Na-P type and Na-A type zeolites by the hydrothermal synthetic method, and their physicochemical properties were studied. The optimal synthetic conditions for producing smectite were $290^{\circ}C$, 72 hr and $75{\sim}100kgf/cm^2$ in autogenous pressure. pHs of initial reaction solutions for the synthesis of smectites from Na-P type and Na-A type zeolite s were pH 6 and pH 10, respectively. The synthetic smectite was confirmed as $12{\AA}$-beidellite by a series of analysis such as X-ray diffraction analysis with random and oriented mounts, ethylene glycol treatment, and Greene-Kelly test, and their several physicochemical properties were studied.

Synthesis of zeolite from power plant fly ash (화력발전소 비산회를 이용한 제올라이트합성)

  • 김재환;연익준;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • A study on the synthesis of zeolite from bituminous coal ESP fly ash as a raw material, which was emitted from the power plant, was carried out to reduce environmental problems and reuse of the industrial wastes. Bituminous coal fly ash was used as the source of silica and alumina. Zeolite was synthesized by hydrothermal reaction in aqueous NaOH solution with sodium aluminate as additive. The objective of this study is to elucidate the effect of several experimental variables on the synthesis of zeolite. The effects of preroasting temperature, mixing speed, leaching alkalinity, and molar ratio of Na$_{2}$O/SiO$_{2}$ and SiO$_{2}$/Al$_{2}$O of the products were investigated. The synthesized zeolite was proved to be NaA, which is known as 4A type, by comparing with SEM images, and X-ray diffraction analysis. And also we know that the transformation of zeolite A take places into other types of zeolites, i.e. Hydroxysodalite, zeolite P, with the variation of leaching alkalinity.

  • PDF

Hydrothermal Mechanism of Na-A Type Zeolite from Natural Siliceous Mudstone (규질 이암으로부터 Na-A형 제올라이트 수열합성 반응기구에 대한 연구)

  • Bae, In-Kook;Jang, Young-Nam;Chae, Soo-Chun;Kim, Byoung-Gon;Ryu, Kyoung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • The mechanism of hydrothermally synthesizing Na-A zeolite from siliceous mudstone at a $Na_2O/SiO_2$ ratio of 0.6, a $SiO_2/Al_2O_3$ 2.0 and a $H_2O/Na_2O$ 119 has been observed by IR, DTA, XRD and SEM. This mudstone is a tertiary periodic sedimentary rock and widely spreads around the Pohang area. In the early hydrothermal synthesis at $80^{\circ}C$ in an autoclave, sodium silicate and sodium aluminate were found to be preferentially reacted to generate Na-A type zeolite. Gibbsite and bayerite were also formed due to the presence of extra aluminum oxide in the feedstock. As reaction time in-creased up to 50 h, residual sodium aluminatewas reacted with siliceous mudstone, causing the Na-A zeolite crystal to grow and the hydroxylsodalite to generate. Therefore, in the $14{\sim}50\;h$ synthetic time, Na-A zeolite and hydroxylsodalite were formed. Also, if reaction time passed over 50 h, a part of the Na-A zeolite was finally redissolved and reacted with hydroxylsodalite to synthesize Na-P zeolite, generating porous surface of Na-A zeolite and disappearing hydroxylsodalite.

Synthesis of P-type Zeolite Using Melting Slag from Municipal Incineration Ash (도시 소각재 용융슬래그로부터 P형 제올라이트 합성)

  • Lee Sung-Ki;Jang Young-Nam;Chae Soo-Chun;Ryu Kyoung-Won;Bae In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.7-14
    • /
    • 2006
  • Melting slag generated from the lots of municipal incineration ash, which causes the one of big urban problems in modern industrial society, was used as starting material for the hydrothermal synthesis of zeolite. P-type zeolite has been successfully synthesized by the combined process of both 'hydrogelation' and 'clay conversion' method. Commercial sodium silicate was used as Si source, and $NaAlO_2$ was prepared by the reaction in a $Na_{2}O/Al_{2}O_{3}$ molar ratio of 1.2. The optimum conditions for zeolite synthesis was found to be the $SiO_{2}/Al_{2}O_{3}$ ratio in the 3.2 and 4.2 range, the $H_{2}O/Na_{2}O$ ratio in the 70.7 and 80.0 range, and more than 15-hour reaction time at $80^{\circ}C$, In the synthesized zeolite, inhomogeneous melting slag particles were disappeared and homogeneous P-type zeolite crystal was grown. The cation exchange capacity of the synthesized zeolite was determined to be approx. 240 cmol/kg.

Utilization of Seawater in the Production of Artificial Zeolite from Fly Ash (석탄회 이용 인공제올라이트 제조시 바닷물 활용효과)

  • Lee, Deog-Bae;Lee, Kyung-Bo;Henmi, Teruo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.334-341
    • /
    • 1998
  • Sodium hydroxide concentrations were adjusted to 2.0, 2.5, 3.0 and 3.5M by dissolution in seawater. The fly ash was hydrothermally reacted with sodium hydroxide solutions (1:8, W:V) at $100^{\circ}C$ under the closed system. X-ray diffractogram proved that Na-P1 type zeolite was produced from bituminous coal fly ash. It is different from the X-ray of artificial zeolite produced by using sodium hydroxide solution dissolving in distilled water. Solid sieve structure was developed well by hydrothermal reaction with the ash and 3.0M sodium hydroxide. However chinks were observed in the structure of the product by 3.5M sodium hydroxide. CEC of the artificial zeolite was $244.5cmol^+\;kg^{-1}$ at 2.0M, 259.8 at 3.0M, 263.4 at 3.0M and 179.8 at 3.5M after 24 hours hydrothermal reaction; Artificial zeolite having high CEC, above $244.5cmol^+\;kg^{-1}$ could produce by using lower concentration of NaOH prepared in seawater than other production methods.

  • PDF

Synthesis of Microporous Zeolitic Membranes and Application in Alcohol/water Separation (다공성 제올라이트 멤브레인의 합성 및 알코올 /물 분리에의 응용)

  • 김건중;남세종
    • Membrane Journal
    • /
    • v.9 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • A and 2SM-5 type zeoli tic crystal films were synthesized on porous supports from the reaction mixture of 1.9 ${SiO}_2$1.5 $Na_20-Al_2O_3-40$ $H_20$ and $Si0_2$-0.l3 $Na_2O$-52 $H_20$-O.l2 TPAOH composition, respectively. The zeolite films were characterized by XRD and SEM. The 2SM -5 crystals grown on the porous matrix were very closely bound together. It was so difficult to obtain the perfectly intergrown crystals in the case of A-type zeolite and this crystal was transformed into P-type zeolite membrane with a prolonged reaction time. The densely intergrown A type zeolite crystal membrane could be also synthesized by the hydrothermal treatment at 100$^{\cirt}C$ after pressing the reaction mixture without addition of water. The pervaporation performance of the synthesized porous inorganic membranes was investigated for alcohol and water mixtures. A-type zeolite membrane crystallized as a thin film showed the selective \'Jermeability of water from the mixtures through the molecular sieving activity of micropores.

  • PDF