• Title/Summary/Keyword: Na-CMC

Search Result 106, Processing Time 0.031 seconds

A Study on the Environmentally Friendly Water-Soluble Fiber (환경친화적인 수용성 섬유에 관한 연구)

  • Park, Jong-Jin;Gaur, Ankur;Song, Ho-Jun;Yoo, Seung-Kwan;Park, Jin-Won
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.201-207
    • /
    • 2007
  • Carboxymethylcellulose (CMC), which is water-soluble at room temperature, was synthesized from cellulose in this study. Experimental parameters included reaction temperature, time, concentration of NaOH, and monochloroacetic acid (MCA). In mercerization and etherification, solubility and degree of substitution (DS) increased when NaOH (or MCA) concentration increased and maximum solubility and DS were achieved when NaOH or MCA was 30%. The effect of MCA concentrations on the DS was larger than that of the NaOH concentration. Tensile strength of the CMC was decreased by the increases of reaction time, reagent concentration and reaction temperature. Tensile strength also decreased by NaOH and MCA. However, low decrease of tensile strength was observed in near neutral region.

  • PDF

A Study on Transport Characteristics of CMC-modified Zero Valent Iron (ZVI) Nanoparticles in Porous Media (다공성 매질내에서 CMC로 표면개질된 영가철 나노입자의 이동 특성에 관한 연구)

  • Cho, Yun-Chul;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.101-107
    • /
    • 2009
  • Carboxymethyl cellulose (CMC) as stabilizer is expected to facilitate in-situ delivery of zero-valent iron (ZVI) nanoparticles in a contaminated aquifer because it increases dispersity of ZVI nanoparticles. This work investigated the transport of CMC-stabilized ZVI nanoparticles (CMC-Fe) using column breakthrough experiments. The ZVI nanoparticles (100 mg/L Fe) were transportable through sand porous media. In contrast, non-stabilized ZVI nanoparticles rapidly agglomerate in solution and are stopped in sand porous media. At pH 7 of solution approximately 80% CMC-Fe were eluted. When the pH of solution is below 5, 100% CMC-Fe were eluted. These results suggest that the mobility of CMCFe was increased as pH decreases. In the mobility test under different ionic strengths using $Na^+$ and $Ca^{2+}$ ions, there was no signigficant difference in the mobility of CMC-Fe. Also, in the experiments of effect of clay and natural organic mater (NOM) on the mobility of ZVI, there was no significant difference in the mobility of CMC-Fe not only between 1 and 5% clay, but 100 and 1000 mg/L NOM. The results from this work suggests that the CMC-Fe nanoparticles could be easily delivered into the subsurface over a broad range of ionic strength, clay and NOM.

Effect of Polymer Coating on the Initial Microorganism Attachment and the Biofilm Growth (고분자 물질 도포가 미생물 부착과 생물막 성장에 미치는 영향)

  • 박영식;송승구
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.104-109
    • /
    • 1998
  • The objective of this study was to examine the effect of polymer coating on the initial microorganism attachment and the biofilm growth. Such as nonion(polyacrylamine), anion(CMC-Na) and cation polymer coagulant(chitosan and PEI) were used for coating material of the support carrier(acryl plate). When polymer coagulant was coated with 5, 10, 20, 35, 50, 100 and 200 mg/l on the surface of acryl plate, initial microorganism attachment increased and optimum concentration for the attachment was 35 mg/l. Biofilm growth experiments were conducted with the substrate loading of 12.7gSCOD/$m^2\cdot$ day using RBC. The polymer coagulants such as CMC-Na, polyacrylamide, PEI and chitosan coating on the acryl plate facilitated the biofilm growth of microorganisms. Until the biofilm dry weight grows up to 0. 0038g/cm$^2$, biofilm growth on the plate coated with cation polymer like chitosan was better than that on the coated plate of nonion(polyacrylamine), anion(CMC-Na) polymer coagulant.

  • PDF

Adsorption Behavior of Metal ions by Na-Cellulose (Na-셀룰로스에 대한 금속이온들의 흡착성에 관한 연구)

  • Lee, Tack-Hyuck;Yoon, Koog-Joong
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.271-276
    • /
    • 1994
  • A Na-cellulose adsorbent was prepared by treating Sigma S-5504 cellulose with 2M NaOH and examined the adsorption behavior between metal ions and Na-cellulose in aqueous solution with batch method. Considering ion exchange capacity of Na-cellulose, the adsorption ratio of the Na-cellulose to metals charge equivalent indicated that the adsorption result from ion exchanging between metal ions and Na-cellulose. The enthalpy for the metal adsorption on the Na-cellulose was calculated to -18kcal/mol, which value was compared to those of carboxymethylcellulose(CMC) and Dowex 50W-X8, these result suggested that the adsorption on Na-cellulose resulted from ion exchange adsorption.

  • PDF

Salt Effects on the Critical Micelle Concentration and Counterion Binding of Cetylpyridinium Bromide Micelles

  • Jong Jae Chung;Sang Wook Lee;Joon Ho Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.411-413
    • /
    • 1991
  • The effects of electrolyte on the critical micelle concentration (cmc) and bromide counterion binding in the micelles of cetylpyridinium bromide (CPB) have been investigated by UV spectroscopy and conductance measurements. Salts used in this study decreased cmc in the order $Cl^-\;<\;Br^-\;<\;NO3^-$ (which parallels the lyotropic series for the inorganic anions) and the effects on cmc followed the equation proposed by Shinoda: log cmc = A - B log (cmc + [NaX]). In the equation, constant B represents the counterion binding to the micelles at cmc and for the micelle of CPB at $25^{\circ}C$, B=80.76%. The association constant for the binding of counterions to long chain cations within micelles was also derived from the cmc values and counterion binding constant to the micelles.

Enzymatic Properties of a Cellulase from Ganoderma lucidum (불로초(不老草)가 생산(生産)하는 Cellulase의 효소학적(酵素學的) 성질(性質))

  • Do, Jae-Ho;Kim, Sang-Dal
    • The Korean Journal of Mycology
    • /
    • v.14 no.1
    • /
    • pp.79-84
    • /
    • 1986
  • A cellulose-degrading enzyme from Ganoderma lucidum was partially purified by ammonium sulfate precipitation and its enzymatic properties were studied. The enzyme had an optimum pH for activity at 4.0, and its stability range was pH $4.0{\sim}7.0$. The optimum temperature was $55^{circ}C$ and the enzyme retained 80% original activity after heated at $50^{\circ}C$ for 60 min. The activation energy of the enzyme for CMC degradation was caculated and found to be 6.2 Kcal/mole. The enzyme was activited by the addition of $Co^{++},\;Mn^{++}$, but slightly inactivated by $Hg^{++}$. Various enzyme inhibitors and chemical reagents did not affect the enzyme activity. The enzyme acted on native celluose as well as CMC. The Michaelis constant for CMC was calculated to be 2.4 mg glucose ep/ml.

  • PDF

The effect of carboxymenthyl cellulose in PP fibers for dye absorption ability

  • Panutumrong, Praripatsaya;Metanawin, Tanapak;Metanawin, Siripan
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.52-60
    • /
    • 2015
  • The present study aims to the use of carboxymenthyl cellulose (CMC) improving the ability of fiber in the dyeing process. Cellulose was extracted from banana leaves by NaOH and then modified by reacting with chloroacetic acid to obtain the carboxymenthyl cellulose. The effect of carboxymenthyl cellulose contents on the mechanical properties and dye absorption were also investigated. Then, CMC were blend with polypropylene (grade 561R) at 1%, 3% and 5% by weight ratio. The fibers were obtained from single screw extruder. The results show that the mechanical properties of the product decreased when increased the amount of CMC in the fiber product. After dyeing, the dye however were absorbed by the CMC-PP fibers more than the original PP fibers. The absorption of dye on the CMC-PP fibers increased significantly with the CMC ratio.

Synthesis of biodegradable films obtained from rice husk and sugarcane bagasse to be used as food packaging material

  • Gupta, Himanshu;Kumar, Harish;Kumar, Mohit;Gehlaut, Avneesh Kumar;Gaur, Ankur;Sachan, Sadhana;Park, Jin-Won
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.506-514
    • /
    • 2020
  • The current study stresses on the reuse of waste lignocellulose biomass (rice husk and sugarcane bagasse) for the synthesis of carboxymethyl cellulose (CMC) and further conversion of this CMC into a biodegradable film. Addition of commercial starch was done to form biodegradable film due to its capacity to form a continuous matrix. Plasticizers such as Glycerol and citric acid were used to provide flexibility and strength to the film. Biopolymer film obtained from sugarcane bagasse CMC showed maximum tensile strength and elongation in comparison to the film synthesized from commercial CMC and CMC obtained from rice husk. It has been observed that an increase in sodium glycolate/NaCl content in CMC imposed an adverse effect on tensile strength. Opacity, moisture content, and solubility of the film increased with a rise in the degree of substitution of CMC. Therefore, CMC obtained from sugarcane bagasse was better candidate in preparing biopolymer/biocomposite film.

Studies on the Use of Carboxymethylcellulose Sodium Salt Matrix for the Immobilization of Photobacterium phosphoreum (Photobacterium phosphoreum을 고정화하기 위한 Carboxymethylcellulose Sodium Salt [CMC] 담체의 이용성 연구)

  • 이용제;정성제;허문석;전억한
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2000
  • Bioluminescence of Photobacterium phosphoreum has been used for the detection of pollutants in the environment. Immobilization method was used to maintain the stability of bioluminescence of P. phosphoreum. The carboxymethylcellulose was investigated to find out whether it was suitable for the immobilization of P. phosphoreum as a matrix without disturbing the bioluminescence emission. A maintenance of bioluminescence was determined from the P. phosphoreum immobilized on the various concentrations of carboxymethylcellulose. A relatively high bioluminescence intensity was shown with immobilized cells on 1%(w/v) carboxymethylcellulose. The effect of carboxymethylcellulose concentrations on the sensitivity of Crcompounds including $Na_{2}CrO_{4}$, $K_{2}CrO_{4}$, $CrO_{3}$, CrK$(SO_4)_{2}$ and $CrCl_{3}$ to the bioluminescence intensity. The calculated $EC_{50}$ showed that the linear relations between such substances and bioluminesence intensity were established.

  • PDF

Synthesis of Water-soluble Fiber using Carboxymethylcellulose(CMC) and Development of Pilot Plant (카르복시메틸셀룰로오스 제조공정을 이용한 수용성 섬유 제조 및 파일럿 플랜트 개발)

  • Song, Ho-Jun;Lee, Seungmoon;Choi, Youngmin;Chung, Eui-Hyun;Maken, Sanjeev;Park, Jin-Won
    • Clean Technology
    • /
    • v.11 no.4
    • /
    • pp.189-194
    • /
    • 2005
  • Carboxymethylcellulose(CMC) which is water-soluble fiber was manufactured by mercerization and etherification in the earlier study. Experimental parameters were conversion time for each step, concentration of reagent and temperature. To know the presence of functional group, CMC was analyzed by FT-IR(Fourier Transform Infrared) spectroscopy. Ethanol was recovered using evaporator and purity of ethanol analyzed by GC-MASS was 97% and 83% after mercerization and etherification respectively. For the pilot plant, if CMC is folded by 40 times it showed maximum efficiency. Maximum solubility was obtained when the ratio of NaOH and MCA is 3 : 4.5.

  • PDF