• Title/Summary/Keyword: Na-A type zeolite

Search Result 61, Processing Time 0.033 seconds

Studies on Synthesis of X-type Zeolite from the Natural Mordenite (천연 Mordenite로부터 X-형 제올라이트 합성에 관한 연구)

  • 이미재;조재훈;허혜경;최병현
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1570-1576
    • /
    • 1994
  • Effect of Na2O/SiO2 molar ratio, calcining temperature and addition of NaCl were investigated on the hydrothermal formation of X-type zeolite from the natural mordenite, which is a kind of rock deposited abundantly in kuryong po. Pulverized mordenite was first mixed with NaOH or NaOH-NaCl solution, and crystallized under hydrothermal condition at 90~10$0^{\circ}C$ for 10 hrs. Optimum condition for synthesis of the X-type zeolite were \circled1 the ratio Na2O/SiO2, NaCl/Al2O3 and H2O/Na2O:0.68, 11.4 and 40, respectively, \circled2 calcining temperature of starting materials: 90$0^{\circ}C$, \circled3 aging time: 48 hrs. and \circled4 crystallization temperature: 10$0^{\circ}C$. The yield of X-type zeolite under the optimum condition was about 55~60%, and the major crystallized X-type zeolite was faujasite phase. Zeolite of then type X was crystallized when NaCl was added to treating solution with in the limit 14.25 of NaCl/Al2O3 molar ratio. As the calcination temperature (from 50$0^{\circ}C$ to 95$0^{\circ}C$) of starting materials increases, yield of zeolite x increase.

  • PDF

Behavior of Na-A Type Zeolite from Melting Slag in its Hydrothermal Synthesis (용융(熔融)슬래그로부터 Na-A형(型) 제올라이트의 수열합성(水熱合成) 거동(擧動)에 대(對)한 고찰(考察))

  • Lee, Sung-Ki;Bae, In-Koon;Jang, Young-Nam;Chae, Soo-Chun;Ryu, Kyoung-Won
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.57-65
    • /
    • 2008
  • The behavior of Na-A type zeolite formed in hydrothermal synthesis of melting slag from municipal incineration ash has been investigated with varying synthesis time and $SiO_2/Al_2O_3$ ratio. Sodium silicate and sodium aluminate feed was found to initially form nuclei of Na-A type zeolite in the behavioral study of the reaction products with different synthesis times. As the synthesis time increased, the nuclei have grown to Na-A type zeolite crystals by reacting with $SiO_2$ and $Al_2O_3$ dissolved from the melting slag. The hydrothermal synthesis was completed in 10 hr in the $SiO_2/Al_2O_3$ ratio of 1.38 and after that time, the Na-A type zeolite formed was dissolved and transformed into hydroxysodalite. Only Na-A type zeolite was formed in the $SiO_2/Al_2O_3$ ratio ranging 0.80 to 1.96, whereas Na-P type zeolite as well as Na-A type was formed in the $SiO_2/Al2O_3$ ratio of 2.54.

Synthesis, Characterization and Structure of NaY Zeolite (NaY 제올라이트의 합성 및 물성과 구조해석)

  • 서동남;김익진
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.215-219
    • /
    • 2001
  • NaY Zeolite를 Autoclave의 자생압력하에 90℃에서 6-36시간 수열 합성법에 의해 합성하였다. 합성된 NaY Zeolite는 1-2㎛의 크기를 갖는 octahedral 구조이고, 격자상수(a)는 23.9230인 NaY zeolite가 단일상으로 합성되었다. SiO₂/Al₂O₃의 몰비는 NaY type인 3.65이고, 상용 NaY zeolite의 BET(509.3㎡/g)에 비하여 Muti- point BET가 약 607.2로 100㎡/g 증가하였고, Pore volume은 0.2416cc/g에 비하여 0.3149cc/g로 증가하였다.

On Crystallization of Korean Bentonite Treated with Aqueous Sodium Hyeroxide Solution (국산 Bentonite의 수산화나트륨 수용액 처리에 의한 결정의 변화)

  • Myun Sup Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.47-52
    • /
    • 1973
  • Korean bentonite was treated with aqueous NaOH solution under the reaction conditions such as concentration of NaOH, 0.5-6N; ratio of $Na_{2}O$ to $SiO_2$, 1-4; reaction time, 2-30 days; reaction temperature, $70^{\circ}C-90^{\circ}C$. The products were examined by X-ray diffraction patterns. When it was treated with 2N NaOH at $70^{\circ}C$, zeolite species $P_1$ was formed with good yield. In higher concentration and at higher temperature than above, zeolite species $P_1$ was converted to hyeroxysodalite. Together with these crystals, some faujasite type zeolite, sodium A zeolite, mordenite type zeolite etc. was formed depending upon reaction conditions.

  • PDF

Synthesis of Columnar Na-P Zeolite by Hydrothermal Process from Natural Zeolite of Korea (천연 Zeollte로부터 열수합성에 의한 주상 Na-P Zeolite합성)

  • Zhang, Yong-Seon;Jung, Pil-Kyun;Kim, Sang-Hyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.357-366
    • /
    • 2003
  • This study was conducted to develop n convenient and efficient granular type absorbent with high CEC from powdery zeolite, which is a waste produced while crushing the natural zeolite of Korea to get a particular particle size. The change of mineralogical characteristics during hydrothermal alternation of natural zeolite to Na-P zeolite in alkaline solution at various reaction times was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and total elemental analysis. The columnar aggregate of Na-P Zeolite was produced by calcinating the natural zeolite-charcoal extrudates of about 3 mm diameter. In 24 hours reaction, clinoptillonite, mordenite and feldspar in natural zeolite were disappeared by 3 N NaOH treatment, while Na-P Zeolite with spherical granular structure was newly detected by XRD. As increasing reaction time, Si/Al ratio in remaining solution was deceased. The CEC of the synthesized material increased more than 2 times compared with that of natural zeolite, although the diameter of Na-P zeolite were rather increased.

Hydrothermal Mechanism of Na-A Type Zeolite from Natural Siliceous Mudstone (규질 이암으로부터 Na-A형 제올라이트 수열합성 반응기구에 대한 연구)

  • Bae, In-Kook;Jang, Young-Nam;Chae, Soo-Chun;Kim, Byoung-Gon;Ryu, Kyoung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • The mechanism of hydrothermally synthesizing Na-A zeolite from siliceous mudstone at a $Na_2O/SiO_2$ ratio of 0.6, a $SiO_2/Al_2O_3$ 2.0 and a $H_2O/Na_2O$ 119 has been observed by IR, DTA, XRD and SEM. This mudstone is a tertiary periodic sedimentary rock and widely spreads around the Pohang area. In the early hydrothermal synthesis at $80^{\circ}C$ in an autoclave, sodium silicate and sodium aluminate were found to be preferentially reacted to generate Na-A type zeolite. Gibbsite and bayerite were also formed due to the presence of extra aluminum oxide in the feedstock. As reaction time in-creased up to 50 h, residual sodium aluminatewas reacted with siliceous mudstone, causing the Na-A zeolite crystal to grow and the hydroxylsodalite to generate. Therefore, in the $14{\sim}50\;h$ synthetic time, Na-A zeolite and hydroxylsodalite were formed. Also, if reaction time passed over 50 h, a part of the Na-A zeolite was finally redissolved and reacted with hydroxylsodalite to synthesize Na-P zeolite, generating porous surface of Na-A zeolite and disappearing hydroxylsodalite.

Synthesis of zeolite A from coal fly ash by alkali fusion followed by hydrothermal treatment (알칼리 용융 및 수열 합성에 의한 석탄회로부터 제올라이트 A의 합성)

  • Jeong, Ji-Baek;Choi, Ko-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.240-247
    • /
    • 2015
  • Zeolite A was prepared from coal fly ash upon NaOH fusion treatment, followed by hydrothermal treatment. The effects of treatment conditions such as NaOH/ash ratio, fusion temperature, the amount of sodium aluminate added, hydrothermal treatment temperature and time on the type and the crystallinity of zeolites were investigated. The optimal NaOH/ash weight ratio and fusion temperature to produce high crystalline zeolite A were 1.2 and $550^{\circ}C$, respectively. The dissolution of $Si^{4+}$ and $Al^{3+}$ from the fused fly ash was not affected by stirring time. The type of synthetic zeolites was found to be dependent on the amount of sodium aluminate added. The low amount of sodium aluminate favored zeolite X, while a single phase zeolite A was produced by increasing the amount sodium aluminate. Zeolite A was transformed into hydroxysodalite with increasing hydrothermal treatment time and temperature. A high crystalline zeolite A could be obtained by decreasing the temperature increasing time up to the reaction temperature.

The Development of Absorption Elements of Ceramic Rotors for the Semiconductor Clean Room System (반도체 클린룸용 세라믹 Rotor 흡착제 개발)

  • 서동남;하종필;정미정;문인호;조상준;김익진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • The present invention relates to a absorption rotor for removed VOC(volatile organic compound) and humidity in semiconductor clean room system. A absorption rotor medium is made by NaX zeolite and TS-1 zeolite formed on a honeycomb matrix of ceramic papers. The crystallization of NaX zeolite was hydrothermal reaction, and NaX zeolite crystals of a uniform particle size of 5$\mu$m were synthesized that NaX zeolite seed crystals (2~3$\mu$m) added in a batch composition at levels of 3~15 wt$\%$. The seeding resulted in an increase in the fraction of large crystals compared with unseeded batches and successfully led to a uniform NaX zeolite crystal. The microporous zeolite-type titanosilicate(TS-1) was synthesized by different of the reactant solution pH. The pH range of reactant solution has been changed from 10.0 to 11.5 TS-1 zeolite (ETS-10), having a large pore(8~10 $\AA$), was synthesized at 10.4 of pH, since TS-1 zeolite (ETS-4), having a small pore(3~5$\AA$), was synthesized at 11.5 of pH.

  • PDF

Synthesis of zeolite from power plant fly ash (화력발전소 비산회를 이용한 제올라이트합성)

  • 김재환;연익준;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • A study on the synthesis of zeolite from bituminous coal ESP fly ash as a raw material, which was emitted from the power plant, was carried out to reduce environmental problems and reuse of the industrial wastes. Bituminous coal fly ash was used as the source of silica and alumina. Zeolite was synthesized by hydrothermal reaction in aqueous NaOH solution with sodium aluminate as additive. The objective of this study is to elucidate the effect of several experimental variables on the synthesis of zeolite. The effects of preroasting temperature, mixing speed, leaching alkalinity, and molar ratio of Na$_{2}$O/SiO$_{2}$ and SiO$_{2}$/Al$_{2}$O of the products were investigated. The synthesized zeolite was proved to be NaA, which is known as 4A type, by comparing with SEM images, and X-ray diffraction analysis. And also we know that the transformation of zeolite A take places into other types of zeolites, i.e. Hydroxysodalite, zeolite P, with the variation of leaching alkalinity.

  • PDF

Characteristics of Ammonium ion-exchange of Zeolit 4A synthesized from Coal Fly Ash (유연탄 Fly ash로부터 합성한 제올라이트 4A의 암모늄 이온교환 특성)

  • 연익준;박상찬;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.42-53
    • /
    • 1999
  • A study on the synthesis of zeolite from coal fly ash from power plant was carried out to reduce environmental problems and reuse industrial waste. The synthesized zeolite was proved to be Zeolite 4A type by means of the XRD and SEM analysis, and then the synthesized zeolite was used as an absorbent to remove the $NH_4^+$ ions in the wastewater and water. In the ion exchange of single $NH_4^+$ ions by the natural zeolite and the synthesized zeolite, the ion exchange reached equilibrium within 10 min. and 1hr, respectively. The amount of ion exchanged $NH_4^+$ to the unit weight of natural zeolite and zeolite 4A were 1.09 and 3.54 meq/g respectively, and the amount of $NH_4$ ion exchanged by the synthesized zeolite was higher than by the natural zeolite. The ion exchange kinetics fitted very well to the Feundlich and Langmuir isotherm. The effects of coexisting cations on the ion-exchange properties of zeolites were studied in order to apply them to water treatment. In the bisolute-system of the $NH_4^+-K^+$ and $NH_4^+-Na^+$ systems, the ion exchange capacity was smaller than the single $NH_4^+$ ion system. The effects of coexisting cations on the ion exchange system by the natural zeolite and the synthesized zeolite were found to be $K^+>Na^+$ and $Na^+>K^+>>Mg^{2+}>Ca^{2+}$, respectively.

  • PDF