• Title/Summary/Keyword: Na effect

Search Result 6,434, Processing Time 0.038 seconds

Correlation Between Enhancing Effect of Sodium Butyrate on Specific Productivity and mRNA Transcription Level in Recombinant Chinese Hamster Ovary Cells Producing Antibody

  • Jeon, Min-Kyoung;Lee, Gyun-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1036-1040
    • /
    • 2007
  • Sodium butyrate (NaBu) has been used to enhance protein expression levels in mammalian cell culture. To determine the clonal variability of recombinant Chinese hamster ovary (rCHO) cells in response to NaBu addition regarding specific antibody productivity $(q_{Ab})$, three rCHO clones were subjected to different concentrations of NaBu. For all three clones, NaBu addition inhibited cell growth and decreased cell viability in a dose-dependent manner. On the other hand, the enhancing effect of NaBu on $q_{Ab}$ varied significantly among the clones. NaBu addition enhanced the antibody production of only one clone. RT-PCR analysis revealed that the changes in $q_{Ab}$ correlated linearly with those of the mRNA transcription level. Thus, it was concluded that the different enhancing effects of NaBu on protein expression in rCHO cell clones resulted from their different mRNA transcription levels.

Regulatory Mechanisms of Angiotensin II on the $Na^+/H^+$ Antiport System in Rabbit Renal Proximal Tubule Cells. I. Stimulatory Effects of ANG II on $Na^+$ Uptake

  • Han, Ho-Jae;Koh, Hyun-Ju;Park, Soo-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.413-423
    • /
    • 1997
  • The importance of the kidney in the development of hypertension was first demonstrated by Goldblatt and his colleagues more than fifty years ago. Many hormones and other regulatory factors have been proposed to play a major role in the development of hypertension. Among these factors angiotensia II (ANG II) is closely involved in renal hypertension development since it directly regulates $Na^+$ reabsorption in the renal proximal tubule. Thus the aim of the present study was to examine signaling pathways of low dose of ANC II on the $Na^+$ uptake of primary cultured rabbit renal proximal tubule cells (PTCs) in hormonally defined seum-free medium. The results were as follows: 1) $10^{-11}$ M ANG II has a significant stimulatory effect on growth as compared with control. Alkaline phosphatase exhibited significantly increased activity. However, leucine aminopeptidase and ${\gamma}-glutamyl$ transpeptidase activity were not significant as compared with control. In contrast to $10^{-11}$ M ANG II stimulated $Na^+$ uptake $(108.03{\pm}2.16% of that of control)$, $10^{-9}$ M ANG II inhibited ($92.42{\mu}2.23%$ of that of control). The stimulatory effect of ANG II on $Na^+$ uptake was amiloride-sensitive and inhibited by losartan (ANG II receptor subtype 1 antagonist) and not by PD123319 (ANG II receptor subtype 2 antagonist). 2) Pertussis toxin (PTX) alone inhibited $Na^+$ uptake by $85.52{\pm}3.52%$ of that of control. In addition, PTX pretreatment prevented the AMG II-induced stimulation of $Na^+$ uptake. 8-Bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP), forskolin, and isobutylmethylxanthine (IBMX) alone inhibited $Na^+$ uptake by $88.79{\pm}2.56,\;80.63{\pm}4.38,\;and\;84.47{\pm}4.74%$ of that of control, respectively, and prevented the ANG II-induced stimulation of $Na^+$ uptake. However, $10^{-11}$ M ANG II did not stimulate cAMP production. 3) The addition of 12-O-te-tradecanoylphorbol-13-acetate (TPA, 0.01 ng/ml) to the PTCs produced significant increase in $Na^+$ uptake ($114.43{\pm}4.05%$ of that of control). When ANG II and TPA were added together to the PTCs, there was no additive effect on $Na^+$ uptake. Staurosporine alone had no effect on $Na^+$ uptake, but led to a complete inhibition of ANG II- or TPA-induced stimulation of Na'uptake. ANG II treatment resulted in a $111.83{\mu}4.51%$ increase in total protein kinase C (PKC) activity. In conclusion, the PTX-sensitive PKC pathway is the main signaling cascade involved in the stimulatory effects of ANG II on $Na^+$ uptake in the PTCs.

  • PDF

Effect of phytic acid as an endodontic chelator on resin adhesion to sodium hypochlorite-treated dentin

  • Mohannad Nassar;Noriko Hiraishi;Md. Sofiqul Islam;Maria JRH. Romero;Masayuki Otsuki;Junji Tagami
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.44.1-44.9
    • /
    • 2020
  • Objectives: Phytic acid (IP6), a naturally occurring agent, has been previously reported as a potential alternative to ethylenediaminetetraacetic acid (EDTA). However, its effect on adhesion to sodium hypochlorite (NaOCl)-treated dentin and its interactions with NaOCl have not been previously reported. Thus, in this study, the effects of IP6 on resin adhesion to NaOCl-treated dentin and the failure mode were investigated and the interactions between the used agents were analyzed. Materials and Methods: Micro-tensile bond strength (µTBS) testing was performed until failure on dentin treated with either distilled water (control), 5% NaOCl, or 5% NaOCl followed with chelators: 17% EDTA for 1 minute or 1% IP6 for 30 seconds or 1 minute. The failed specimens were assessed under a scanning electron microscope. The reaction of NaOCl with EDTA or IP6 was analyzed in terms of temperature, pH, effervescence, and chlorine odor, and the effects of the resulting mixtures on the color of a stained paper were recorded. Results: The µTBS values of the control and NaOCl with chelator groups were not significantly different, but were all significantly higher than that of the group treated with NaOCl only. In the failure analysis, a distinctive feature was the presence of resin tags in samples conditioned with IP6 after treatment with NaOCl. The reaction of 1% IP6 with 5% NaOCl was less aggressive than the reaction of the latter with 17% EDTA. Conclusions: IP6 reversed the adverse effects of NaOCl on resin-dentin adhesion without the chlorine-depleting effect of EDTA.

The effect of Aconiti tuber butanol fraction on the rabbit heart microsomal $Na^+-K^+$-activated ATPase activity (부자 Butanol Fraction이 가토 심장근 Microsomal $Na^+-K^+$-activated ATPase 활성도에 미치는 영향)

  • Shin, S.G.;Lim, J.K.;Park, C.W.;Kim, M.S.
    • The Korean Journal of Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 1976
  • Aconiti tuber butanol fraction shows positive inotropic effect on the isolated atrium of rabbit heart. To investigate the mechanism, the effect on microsomal ATPase activity of rabbit heart is observed. The microsomal fraction which contains the $Na^+$- and $K^+$-activated ATPase in the presence of $Mg^{++}$ is isolated from the left ventricle of rabbit heart. The microsomal ATPase activity is maximally stimulated at $Na^+$ and $K^+$ concentration of 100 mM and 10 mM respectively. Microsomal $Na^+-K^+$-activated ATPase is inhibited by ouabain and Aconiti tuber butanol fraction. Ouabain and Aconiti tuber butanol fraction depress $Na^+$-stimulation on microsomal ATPase activity, and the inhibitory effects are not completely reversed at $Na^+$ concentration of 300 mM. Also, $K^+$-stimulation on microsomal ATPase activity is inhibited by ouabin and Aconiti tuber butanol fraction and the inhibitions are not compeletely reversed at $K^+$ concentration of 30 mM. It is, therefore, suggested that the inhibitory effect of Aconiti tuber butanol fraction on the microsomal ATPase activity may contribute to leading to the positive inotropic effect.

  • PDF

Effect of Ginseng on $Na^+$, $K^{+}-ATPase$ Activities of Potassium Deficient Rat Intestinal Mucosa (인삼이 칼륨결핍랫트 장점막의 $Na^+$,$K^{+}-ATPase$ 활성에 미치는 영향)

  • Lee, Myong-Hee;Kim, Nak-Doo
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.62-69
    • /
    • 1988
  • We have studied the effect of fasting on $Na^+$, $K^{+}-ATPase$ activities in the rat intestinal mucosa. Rats were fasted for $18{\sim}48hr$. Intestinal microsomal fraction was prepared by the method of Robinson and ATPase activities were determined by the modified method of Fiske and Subbarow. $Na^+$, $K^{+}-ATPase$ activity was not changed after fasting for 18 and 24 hr but significantly decreased after fasting for 48 hr. Fasting over 18 to 48 hr period had no effect on the $Mg^{++}-ATPase$. Thus, it may be concluded that 48 hr fasting has inhibitory effect on rat intestinal absorptive capabilities. In order to study the effect of Ginseng on the $Na^+$, $K^{+}-ATPase$ activities of the small intestine in chronic $K^{+}-depleted$ rats, rats were fed $K^{+}-depleted$ diets for 3 weeks and Ginseng ethanol extracts were administered orally for 3 weeks concomitantly. ATPase activity was measured by the same method as fasting group. $Na^+$, $K^{+}-ATPase$ activity in the $K^{+}-depleted$ diet group was increased and Ginseng ethanol extracts inhibited the increase of enzyme activity induced by $K^{+}-depleted$ diet. Thus, it may be suggested that increase in the intestinal $Na^+$, $K^{+}-ATPase$ activity of chronic $K^{+}-depleted$ group may be due to the compensatory mechanism and administration of Ginseng with $K^{+}-depleted$ diet may be associated with inhibition of increase in the enzyme activity of the $K^{+}-depleted$ group due to the prevention of the $K^+$ loss in the $K^{+}-depletion$.

  • PDF

The effect of NaF on bone and tooth resorption around an anchor tooth during a rapid maxillary expansion procedure (급속상악확대술 시행 후 지대치와 지지골 표면에 나타나는 치근흡수의 불화나트륨 단독투여를 통한 예방에 대하여)

  • Min, Seungki;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.34 no.6 s.107
    • /
    • pp.526-536
    • /
    • 2004
  • This study was undertaken to determine the effect of a 2.2mg/Kg/day intraoral administration of NaF on the amount of root resorption and osteoclastic activity during or after a rapid maxillary expansion procedure. Ten puerile female dogs were divided into two groups: a control group and a NaF-treated group. A fixed type maxillary expansion device was delivered to all dogs. The appliance was activated twice daily throughout a 20-day period, causing a 5-mm expansion of maxillary bone. After the expansion procedure, the animals were sacrificed at days 0, 15, 30, 45, and 60 of the retention period. The buccal surface of the root of each maxillary canine was examined by means of a surface electron microscope (SEM). Using SEM, web-like resorption lacunae were observed on the bone or the tooth surface at the site of osteoclastic activity; these observations were verified by histological methods. No peculiar resorption lacunae were found in the apical tip of the roots of either the control group or the NaF-treated group animals. The NaF-treated retention group was found to have less resorption lacunae formation on day 45 and day 60. The preventative effect of NaF on resorption lacunae formation on the surface of the bone covering the anchor tooth was confirmed. Larger areas of resorption lacunae were found on the surface of the bone covering the canines in the control group animals, as compared to those of the NaF-treated group, especially on day 30 and day 60. Using SEM, the present study revealed a difference between the control group and the NaF-treated group in the prevalence and the size of the resorption lacunae formation on the cemental root surface. The preventative effect of NaF on bone resorption was confirmed. Further studies concerned with the optimum concentration of NaF that has an effect in vivo are necessary.

Effect of Sam Hwa San on Na-K-ATPase Activity in Microsomal Fraction of Rabbit Cerebral Cortex (삼화산(三和散)이 대뇌피질(大腦皮質) microsome분획(分劃)에서 Na-K-ATPase활성(活性)에 미치는 영향(影響))

  • Kim, Gil-Seop;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.16 no.1 s.29
    • /
    • pp.281-294
    • /
    • 1995
  • The effect of Sam Hwa San on the Na-K-ATPase activity was evaluated in microsomal fraction prepared from rabbit cerebral cortex to determine whether Sam Hwa San affects Na-K-ATPase activity of nervous system. Sam Hwa San markedly inhibited the Na-K-ATPase activity in a dose-dependent manner with an estimated $I_{50}$ of 0.12%. Optimal pH for the Na-K-ATPase activity was at 7.5 in the presence or absence of Sam Hwa San. The degree of inhibition by the drug more increased at acidic and alkalic pHs than neutral pH. Kinetic studies of substrate and cationic activation of the enzyme indicate classic noncompetitive inhibition fashion for ATP, Na and K, showing significant reduction in Vmax without a change in Km. Dithiothreitol, a sulfhydryl reducing reagent, partially protects the inhibition of Na-K-ATPase activity by Sam Hwa San. Combination of Sam Hwa San and ouabain showed higher inhibition than cumulative inhibition. These results suggest that Sam Hwa San inhibits Na-K-ATPase activity in central nervous system by reacting with, at least a part, sulfhydryl group and ouabain binding site of the enzyme protein, but with different binding site from those of ATP, Na and K.

  • PDF

Probabilistic Models to Predict Listeria monocytogenes Growth at Low Concentrations of NaNO2 and NaCl in Frankfurters

  • Gwak, Eunji;Oh, Mi-Hwa;Park, Beom-Young;Lee, Heeyoung;Lee, Soomin;Ha, Jimyeong;Lee, Jeeyeon;Kim, Sejeong;Choi, Kyoung-Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.815-823
    • /
    • 2015
  • This study developed probabilistic models to describe Listeria monocytogenes growth responses in meat products with low concentrations of NaNO2 and NaCl. A five-strain mixture of L. monocytogenes was inoculated in NBYE (nutrient broth plus 0.6% yeast extract) supplemented with NaNO2 (0-141 ppm) and NaCl (0-1.75%). The inoculated samples were then stored under aerobic and anaerobic conditions at 4, 7, 10, 12, and 15℃ for up to 60 d. Growth response data [growth (1) or no growth (0)] for each combination were determined by turbidity. The growth response data were analyzed using logistic regression to predict the growth probability of L. monocytogenes as a function of NaNO2 and NaCl. The model performance was validated with the observed growth responses. The effect of an obvious NaNO2 and NaCl combination was not observed under aerobic storage condition, but the antimicrobial effect of NaNO2 on the inhibition of L. monocytogenes growth generally increased as NaCl concentration increased under anaerobic condition, especially at 7-10℃. A single application of NaNO2 or NaCl significantly (p<0.05) inhibited L. monocytogenes growth at 4-15℃, but the combination of NaNO2 or NaCl more effectively (p<0.05) inhibited L. monocytogenes growth than single application of either compound under anaerobic condition. Validation results showed 92% agreement between predicted and observed growth response data. These results indicate that the developed model is useful in predicting L. monocytogenes growth response at low concentrations of NaNO2 and NaCl, and the antilisterial effect of NaNO2 increased by NaCl under anaerobic condition.

Effect of Acid and Salt on Weight toss of Polyester (PET) fabric by Sodium Hydroxide (산과 염이 폴리에스터 직물의 알칼리 감량에 미치는 영향)

  • Do, Sung-Guk;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.65-73
    • /
    • 1992
  • To control the hydrolysis rate of PET fabric with NaOH, HCl and $CH_3$COOH(HAc), as regulating reagent, were added to the 0.5 M NaOH solution. The concentrations of acids in 0.5 M NaOH were varied. PET fabrics were treated with aqueous solutions of acids in 0.5 M NaOH under different conditions. The weight loss of PET fabric, the rate of hydrolysis, the apparent activation energy (E$_{\alpha}$), the handle value, the etched surface of treated PET fabric, and the effect of salts such as NaCl, $CH_3$COONa(NaAc), and NH$_4$Cl on the weight loss were discussed. Acids in the aqueous 0.5 M NaOH solution decreased the weight loss of PET fabric bacause of neutralization of OH- and the weight loss of PET fabrics treated with corresponding concentration of aqueous NaOH solution to the concentrations of the aqueous solutions of acids in 0.5 M NaOH was lower than that of PET fabrics treated with aqueous solutions of acids in 0.5 M NaOH. The addition of NaCl to aqueous NaOH solution accelerated the reaction of OH- with PET greatly, the addition of NaAc increased the weight loss slightly, but the addition of NH$_4$Cl decreased the weight loss. It was thought that the very remarkable result that NaCl in aqueous NaOH solution promoted the hydrolysis of PET with NaOH would contribute to the conservation of energy and NaOH in the weight loss finishing process of PET fabric. The etched surface and the handle value of treated PET fabric were independent of the difference in the kinds of acids and salts added.nd salts added.

  • PDF

The Effect of Habitual Calcium and Sodium Intakes on Blood Pressure Regulating Hormone in Free-Liveing Hypertensive Women (정상생활을 하는 고혈압 여성에 있어서 일상적인 나트륨, 칼슘 섭취습관이 혈압조절 관련 호르몬에 미치는 영향)

  • 박정아;윤진숙
    • Journal of Nutrition and Health
    • /
    • v.34 no.4
    • /
    • pp.409-416
    • /
    • 2001
  • In order to evaluate the effect of habitual Na and Ca intake on blood pressure regulation, we measured the habitual dietary intakes of Na and Ca, urinary excretion of Ca, Na and K, and plasma level of renin activity, aldosterone, and indices of Ca metabolism in 27 untreated hypertensive women and 30 age-matched normal women on a free diet. Hypertensive and total subjects were divided into four groups according to habitual dietary intakes of Na and Ca as low Na-low Ca(LNLC), low Na-high Ca(LNHC), high Na-low Ca(HNLC), and high Na-high Ca(HNHC). HNLC hypertensive group showed the lowest level of plasma renin activity, 25-(OH) Vit D$_3$, calcitonin and serum total Ca, and presented the highest level of PTH and urinary excretions of Na/K and Ca/Cr. There were no significant difference in plasma level of aldosterone and urinary excretion of Na and K among four hypertensive groups. When all subjects were divided into four groups according to the same method, HNLC group showed the highest level of blood pressure with no statistical significance and the lowest level of calcitonin and total serum Ca. The above results indicated that renin-aldosterone system and Ca regulating hormone has a mutual relationship in hypertension. Na and Ca may interact each other, rather than affecting independently blood pressure control. As a result, considering the fact that daily balance of Na and Ca intakes affects Na and Ca regulating hormones and urinary excretion of Na and Ca, it may be involved in blood pressure control. These results suggest that maintaining an adequate intake of Ca with less intake of Na may prevent from the risk of hypertension. (Korean J Nutrition 34(4) : 409~416, 2001)

  • PDF