• Title/Summary/Keyword: Na+-K+-ATPase activity

Search Result 176, Processing Time 0.018 seconds

Seasonal Variation in the $Na^+$,$K^+$-ATPase Activity in Frog (Rana dybowskii) Brain (개구리 뇌에서 $Na^+$,$K^+$- ATPase 특성의 계절적 변화)

  • 김미승;임욱빈
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.449-456
    • /
    • 1995
  • Seasonal changes in the activity and charaderistics of brain Na+, K+-ATPase and Mg2+-AWase were investigated in frog (Rana dybowskii) The brain Na+, K+-ATPase adivity during hibernation was similar to that in active period in frogs. The Na+, K+-AWase activity increased in December and March, when the frogs enter into and awake from the hibernation. Over 5-35$^{\circ}C$ temperature range, Na+, K+-ATPase showed non4inear Arrhenius kinetics throughout the year. The brain Mg2+-ATPase activity decreased during hibernation, but markedly increased in March. The Arrhenius plots for Mg2+-AWase activity were linear in frogs both in torpid and active state. The ratio of Na+, K+-AWase activity at 15~C to at 35~C did not change during hibernation. The sensitivity of Na+, K+-AWase to ouabain was also unchanged throughout the year. These results indicate that the activity and charaderistics of brain Na+, K+-AWase remain unchanged during hobernadon in frog.

  • PDF

Effect of Vanadate on Na-K-ATPase Activity of Rabbit Kidney Cortex (Vanadate가 가토신피질 Na-K-ATPase활성에 미치는 영향)

  • Woo, Jong-Ryeol;Han, Bok-Ki;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.17 no.2
    • /
    • pp.161-168
    • /
    • 1983
  • Studies on the effects of vanadate for Na-K-ATPase activity were carried out with rabbit renal cortex. 1) Na-K-ATPase activity was inhibited with the concentrations of vanadate in incubation medium. The vanadate concentration at which activity was inhibited by 50%$(ID_{50})$ was $10^{-6}M$ and Hill coefficient was 1.00. 2) The fractional inhibition by constant concentration of vanadate decreased with increasing enzyme concentration. 3) Increasing $K^+$ and $Na^+$ concentrations in incubation medium diminished the ability to inhibit Na-K-ATPase by vanadate whereas increasing $K^+$ and $Mg^{2+}$ concentrations potentiated the inhibition of Na-K-ATPase by vanadate. 4) Vanadate didn't inhibit Na-K-ATPase at pH 6.6. Increasing pH potentiated the inhibition of Na-K-ATPase activity. 5) Vanadate inhibited Na-K-ATPase activity reversibly in all range of concentrations in dilution experiment. These results show that vanadate inhibits Na-K-ATPase activity with interacting at $KE_2$ state reversibly.

  • PDF

The Effect of $Mg^#$, $Ca^#$, $Na^+$, $K^+$ and Creatine Phosphate on the ATPase Activity of Microsomal Fraction from Rabbit Uterus (가토자궁근(家兎子宮筋)에서 분리(分離)한 Microsome 분획내(分劃內) Adenosinetriphosphatase 활성도(活性度)에 미치는 $Mg^#$, $Ca^#$, $Na^+$, $K^+$ 및 Creatine phosphate의 영향(影響))

  • Choi, Sin-Jyoung
    • The Korean Journal of Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.35-42
    • /
    • 1966
  • The author investigated the effect of $Mg^#$, $Ca^#$, $Na^+$, $K^+$ and creatine phosphate on the ATPase activity of microsomal fraction isolated from rabbit uterus and obtained the following results : 1) The uterine microsomal fraction contained the $Na^+-$ and $K^+-$ activated ATPase in the presence of $Mg^#$. The ATPase activity increased with protein content in the fraction. 2) The maximum ATPase activity was obtained at $Na^+$ and $K^+$ concentraction of 100 mM respectively. 3) In the absence of $Mg^#$, the ATPase was not activated by $Na^+$ and $K^+$, but inhibited. 4) Car stimulated the $Na^+-$ and $K^+-$ activated ATPase in the presence of $Mg^#$. However, in the absence of $Mg^#$, the ATPase was not activated by $Ca^#$. 5) The $K^+-$ activated ATPase activity was greater than the $Na^+-activated$ ATPase under all conditions. 6) The $Na^+-$ and $K^+$ activated ATPase activity was increased by addition of creatine phosphokinase and creatine phosphate to the reaction mixture.

  • PDF

The Effects of Diphenylhydantoin and Ouabain on ATPase Activity in Rat Erythrocyte Membranes (Diphenylhydantoin 및 Ouabain 이 흰쥐 적혈구세포막 ATPase에 미치는 영향)

  • Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 1970
  • The effects of ouabain and diphenylhydantoin on ATPase activity in rat erythrocyte membranes were studied and also influence of K on ATPase activity was studied. The ATPase activity of rat erythrocyte membrane has been shown to consist of two components. The first component requires the Mg but occurs in the absence of Na or K (Mg-ATPase) and is not inhibited by ouabain and stimulated by diphenylhydantoin. The second component requires the presence of Mg and also Na or K (Na-K-Mg-ATPase). It is inhibited by ouabain and is stimulated by diphenylhydantoin in low Na concentration and inhibited in high Na concentration. K inhibit Na-K-Mg-ATPase which is inhibited by ouabain. Ouabain and diphenylhydantoin show reversed effect to Na-K-Mg-ATPase activity. It suggest that the therapeutic effect of diphenylhydantoin on digitalis induced cardiac arrhythmia may be resulted from their effect on ion transport mechanism of cell membrance. And the relevance of these findings to the action of ouabain and diphenylhydantoin on membrane transport mechanism is discussed.

  • PDF

Action of Acetylcholine on Sodium-Potassium Activated ATPase in Rabbit Red Cell Membrane (Acetylcholine이 토끼 적혈구막의 NaK ATPase의 활성도에 대한 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 1976
  • The action of acetylcholine on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of acetylcholine on the ATPase activity. The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is inhibited by acetylcholine. 2. The ratio of inhibition of NaK ATPase by acetylcholine is decreased by raising the potassium concentration, and is increased by raising the sodium concentration. 3. The ATPase activity is increased by small amounts of calcium but inhibited by larger amounts. The ratio of inhibition of the enzyme by acetylcholine is increased by raising the calcium concentration. 4. The inhibitory action of acetylcholine on the NaK ATPase activity was not related to the sulfhydryl group of cysteine, the hydroxyl group of threonine, or the carboxyl group of aspartic acid. 5. The inhibitory action of acetylcholine on the ATPase activity is due to amino group of the enzyme of NaK ATPase.

  • PDF

The Effects of Ginseng on $Na^+,\;K^+-ATPase$ Activity of Sarcolemma Fragments in Rat Hearts (흰쥐에 인삼투여시 심장근 섬유막 절편 $Na^+,\;K^+-ATPase$ 활성의 변화)

  • Lim, Jeung-Eun;Kim, Nak-Doo
    • Korean Journal of Pharmacognosy
    • /
    • v.16 no.2
    • /
    • pp.93-98
    • /
    • 1985
  • This investigation was performed to study the effect of Ginseng water extract on the cardiac sarcolemma $Na^+,\;K^+-ATPase$ activity of rat hearts. The Ginseng water extract (100mg/kg/day) was administered orally to Sprague-Dawley rats for one, four and seven days. The fragment of sarcolemma was prepared by the method of Matsui and Erdmann and the $Na^+,\;K^+-ATPase$ and $Mg^{++}-ATPase$ activity were measured by the method of Martins and Doty. $Na^+,\;K^+-ATPase$ activity in the rat heart treated with Ginseng water extract for 1 day was not significantly different from control value, but the activity was decreased by 13.4% in the rat heart treated for 4 days and was decreased by 20.4% in the 7 days treated group. $Mg^{++}-ATPase$ activity in the rat treated with ginseng water extract was similar to control value. It may be concluded that chronic administration of Ginseng may inhibit the $Na^+,\;K^+-ATPase$ enzyme activity, but single administration may not inhibit the activity.

  • PDF

Effect of Samhwasan on Na-K-ATPase Activity in Microsomal Fraction of Rabbit Heart Ventricles (삼화산(三和散)이 심장(心臟) Na-K-ATPase 활성(活性)에 미치는 영향(影響))

  • Shin, Hyeon-Chul;Yoon, Cheol-Ho;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.17 no.2 s.32
    • /
    • pp.264-276
    • /
    • 1996
  • This study was carried out to evaluate the effect of Samhwasan on the Na-K-ATPase activity of heart muscle. The Na-K-ATPase activity was prepared from rabbit heart ventricles. Samhwasan markedly inhibited the Na- K - ATPase activity in a dose-dependent manner with an estimated $I_{50}$ of 0.56%. Hill coefficient was 1.70, indicating that the enzyme has more than one binding site for the Samhwasan. Inhibition of enzyme activity by Samhwasan increased as pretreatment time was prolonged. Inhibition by the drug was not affected by a change in enzyme protein concentration. Kinetic studies of substrate activation of the enzyme indicated classical noncompetitive inhibition, showing significant reduction in Vmax without a change in Km value. Inhibitory effect by Samhwasan was not altered by changes in concentration of $Mg^{2+}$, $Na^+$ or $K^+$, dithiothreitol. a sulfhydryl reducing reagent, did not protect the inhibition of Na-K-ATPase activity by Samhwasan combination of Samhwasan and ouabain showed a cumulative inhibition fashion. These results suggest that Samhwasan inhibits Na-K-ATPase activity of heart ventricles with an unique binding site different from that of ATP, $Mg^{2+}$, $Na^+$ or $K^+$ and ouabain.

  • PDF

Effect of Sam Hwa San on Na-K-ATPase Activity in Microsomal Fraction of Rabbit Cerebral Cortex (삼화산(三和散)이 대뇌피질(大腦皮質) microsome분획(分劃)에서 Na-K-ATPase활성(活性)에 미치는 영향(影響))

  • Kim, Gil-Seop;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.16 no.1 s.29
    • /
    • pp.281-294
    • /
    • 1995
  • The effect of Sam Hwa San on the Na-K-ATPase activity was evaluated in microsomal fraction prepared from rabbit cerebral cortex to determine whether Sam Hwa San affects Na-K-ATPase activity of nervous system. Sam Hwa San markedly inhibited the Na-K-ATPase activity in a dose-dependent manner with an estimated $I_{50}$ of 0.12%. Optimal pH for the Na-K-ATPase activity was at 7.5 in the presence or absence of Sam Hwa San. The degree of inhibition by the drug more increased at acidic and alkalic pHs than neutral pH. Kinetic studies of substrate and cationic activation of the enzyme indicate classic noncompetitive inhibition fashion for ATP, Na and K, showing significant reduction in Vmax without a change in Km. Dithiothreitol, a sulfhydryl reducing reagent, partially protects the inhibition of Na-K-ATPase activity by Sam Hwa San. Combination of Sam Hwa San and ouabain showed higher inhibition than cumulative inhibition. These results suggest that Sam Hwa San inhibits Na-K-ATPase activity in central nervous system by reacting with, at least a part, sulfhydryl group and ouabain binding site of the enzyme protein, but with different binding site from those of ATP, Na and K.

  • PDF

Effects of lead on ATPase activity in the sciatic nerve of Sprague-Dawley rat (랫드의 대퇴 신경중 ATPase 효소활성에 미치는 납의 영향)

  • 정명규
    • Environmental Analysis Health and Toxicology
    • /
    • v.9 no.1_2
    • /
    • pp.1-8
    • /
    • 1994
  • Nerve conduction impairment in lead neuropathy has been empirically linked to altered nerve myo-inositol metabolism. In most cases of neuropathy, abnormal myo-inositol metabolism is associated with abnormal $Na^+/K^+$ATPase provides a potential mechanism to relate defects of the myo-inositol metabolism in the peripheral nerve treated with lead. Therefore, the effect of lead on the rat sciatic nerve $Na^+/K^+$ATPase and other ATPase of sciatic nerve was studied. ATPase activity was measured enzymatically in sciatic nerve homogenates from 2-wk lead treated neuropathy rats and age-mached controls administered myo-inositol. $Na^+/K^+$ATPase components were assessed by ouabain inhibition or the omission of sodium and potassium ions. Lead reduced 50% reduction in the $Na^+/K^+$ATPase activity in homogenates of sciatic nerve. The 50% reduction in the $Na^+/K^+$ ATPase activity was selectively prevented by myo-inositol treatment. This study suggests that the toxic mechanism of the lead on peripheral nerve may be through reduction in $Na^+/K^+$ATPase activity which has been linked to axonal transport slowing in the rat model of lead neuropathy, via direct changes by the perturbation of the intracelluar sodium or potasium level.

  • PDF

Action of Anthraquinone on Sodium-Potassium activated -ATPase in Rabbit Red Cell Membrane- (Anthraquinone이 토끼 적혈주막의 NaK ATPase웨 활성도에 대한 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 1977
  • Action of anthraquinone on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of anthraquinone on the ATPase activity. The following results were obtained 1. The activity of the NaK ATPase from red cell membrane is inhibited by anthraquinone and the concentration of anthraquinone for maximal inhibition is about 5mM. 2. The ratio of inhibition of NaK ATPase by anthraquinone, with a giving concentration of sodium in the medium, is increased by raising the potassium concentration. 3. The ratio of inhibition of NaK ATPase by anthraquinone, with a given concentration of potassium in the medium, is increased by raising the sodium concentration. 4. The action of anthraquinone on the NaK ATPase activity is inhibited by calcium ions and the ratio of inhibition is increased by small amounts of calcium but almost constant by larger amounts. 5. The inhibitory action of anthraquinone on the NaK ATPase activity was not related to the amino group of lysine, the hydroxyl group of threonine or the imidazole group of histidine. 6. The inhibitory action of anthraquinone on the ATPase activity is due to sulfhydryl group or the carboxyl group of the enzyme of NaK ATPase.

  • PDF