• Title/Summary/Keyword: NURBS Interpolation

Search Result 56, Processing Time 0.037 seconds

Inlet Surface Blending using NURBS Skinning (NURBS Skinning을 이용한 Inlet Surface 합성)

  • Choi, Gun-Il
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.181-185
    • /
    • 2002
  • The modeling of realistic water-jet geometry is needed in order to facilitate the design modifications. The present paper proposes a method of generating inlet geometry. Inlet duct was represented by NURBS method which utilized the skinning and local cubic interpolation scheme. Three test examples are presented demonstrating the effectiveness of the methods of skinning and local cubic interpolation. Computational examples associated with practical configurations have shown the usefulness of the present method.

  • PDF

A Study on the NURBS Interpolator for the Precision Control of Wire-EDM (와이어컷 방전가공기의 정밀제어를 위한 NURBS 보간기에 관한 연구)

  • 박진호;남성호;정태성;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.143-151
    • /
    • 2004
  • This paper deals with the precision NURBS interpolator for wire-EDM. Previous research about OAC (Open Architecture Controller) is mostly aimed at NC cutting machines such as milling or lathes, and hence these results are inadequate to apply to wire-EDM. In contradiction to NC machines, wire-EDM operates relatively slow feed rates and based on a feedback control loop to the machining process. The 2-stage interpolation method which reflects wire-EDM specific characteristics was proposed. The constant interpolation error could be acquired through 1 st stage interpolation. Feed rate regulation was performed through 2nd stage interpolation. The suggested algorithm was implemented to test-bed PC-NC system. Computer simulations and the experimental machining were conducted.

NURBS Curve Interpolator for Controlling the Surface Roughness (표면거칠기를 고려한 NURBS 곡선보간기)

  • Choi In hugh;Jung Tae sung;Yang Min Yang;Lee Dong yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.698-706
    • /
    • 2005
  • Finish machining of a curved surface is often carried out by an NC system with curve interpolation in the field. This NURBS interpolation adopts a feedrate optimizing strategy based on both the geometrical information and dynamic properties. In case of a finish cut using a ball-end mill, the curve interpolator needs to take the machining process into account for more improved surface, while reducing the polishing time. In this study, the effect of low machinability at the bottom of a tool on surface roughness is also considered. A particular curve interpolation algorithm is proposed fur generating feedrate commands which are able to control the roughness of a curved surface. The simulation of the machined surface by the proposed algorithm was carried out, and experimental results are presented.

NURBS Interpolator for Controlling the Surface Roughness (표면 거칠기를 고려한 NURBS 보간기)

  • Choi, In-Hugh;Jung, Tea-Sung;Hong, Won-Pyo;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1226-1233
    • /
    • 2003
  • Finish machining of a curved surface is often carried out by an NC system with curve interpolation in the field. This NURBS interpolation adopts a feedrate optimizing strategy based on both the geometrical information and dynamic properties. In case of a finish cut using a ball-end mill, the curve interpolator needs to take the machining process into account for more improved surface, while reducing the polishing time. In this study, the effect of low machinability at the bottom of a tool on surface roughness is also considered. A particular curve interpolation algorithm is proposed for generating feedrate commands which are able to control the roughness of a curved surface. The simulation of the machined surface by the proposed algorithm was carried out, and experimental results are presented.

  • PDF

NURBS Interpolator for Controlling the Surface Roughness (표면 거칠기를 고려한 NURBS 보간기)

  • 최인휴;양민양;이강주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.162-167
    • /
    • 2003
  • Finish machining of a curved surface is often carried out by an NC system with curve interpolation in the field. This NURBS interpolation adopts a feedrate optimizing strategy based on both the geometrical information and dynamic properties. In case of a finish cut using a ball-end mill. the curve interpolator needs to take the machining process into account for more improved surface, while reducing the polishing time. In this study, the effect of low machinability at the bottom of a tool on surface roughness is also considered. A particular curve interpolation algorithm is proposed for generating feedrate commands which are able to control the roughness of a curved surface. The simulation of the machined surface by the proposed algorithm was carried out, and experimental results are presented.

  • PDF

Simulation Study for the Application of NURBS Interpolator (CNC공작기계에 NURBS 보간 알고리즘 적용을 위한 시뮬레이션 분석)

  • 김태훈;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.979-982
    • /
    • 2001
  • In CNC machining, demands on precision machining of free formed surface model are increasing. Most of the CAD/CAM systems provide the NURBS(Non-Uniform Rational B-Spline) interpolator. NURBS is defined with NURBS parameter by control point, weight value and knot value. This paper shows the realtime NURBS interpolation algorithms and compared with each other. One is based on the equal length of curve segments rather than equal increment of the parameter Δu. The other is to limit the interpolation error to any desired level by adjusting the feedrate considering the curvature of the shape and sampling time.

  • PDF

Development of the Real-Time 3D NURBS Interpolator for CNC Machines (CNC 공작기계의 실시간 3차원 NURBS 보간기 개발)

  • 홍원표;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1032-1035
    • /
    • 2000
  • Increasing demands on precision machining with computerized numerical control (CNC) machines have necessitated that the tool to move not only position error as small as possible, but also with smoothly varying feedrates in space. This paper presents a new high precision interpolation algorithm for 3-dimensional (3D) Non-Uniform Rational B-Spline (NURBS) curve in the reference-pulse CNC technique. Based on the minimum path error strategy, real-time NURBS interpolator was developed in software and this was implemented with a PC-NC milling machine. The several experimental results have shown that the proposed NURBS interpolator is useful for the high precision machining of complex shapes. It is expected that this algorithm can be applied to the CNC machines for the machining of 3D free-form surfaces.

  • PDF

NURBS Post-processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1111-1117
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good for precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied, and the machining result of NURBS tool path was compared with that of linear tool path. The N-post, post-processing and virtual machining software was developed. The N-Post post-processes linear tool path to NURBS tool path and quickly shades machined product on OpenGL view and compares a machined product with original CAD surface. A virtual machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error of post-processed NURBS tool path was reduced to 43%. The original tool path and NURBS tool path was used to machine general model using same machine tool and machining condition. The machining time of post-processed NURBS tool path was reduced up to 38%.

  • PDF

Simultaneous 3D Machining with Real-Time NURBS Interpolation

  • Hong, Won-Pyo;Lee, Seok-Woo;Park, Hon-Zong;Yang, Min-Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.336-342
    • /
    • 2003
  • Increasing demand on precision machining using computerized numerical control (CNC) machines have necessitated that the tool move not only with the smallest possible position error but also with smoothly varying feedrates in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining process investigated using a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non Uniform Rational B-Spline (NURBS) curve is proposed. With this accurate and efficient algorithm for the generation of complex 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining was accomplished satisfactorily.

2.5D Quick Turnaround Engraving System through Recognition of Boundary Curves in 2D Images (2D 이미지의 윤곽선 인식을 통한 2.5D 급속 정밀부조시스템)

  • Shin, Dong-Soo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.369-375
    • /
    • 2011
  • Design is important in the IT, digital appliance, and auto industries. Aesthetic and art images are being applied for better quality of the products. Most image patterns are complex and much lead-time is required to implement them to the product design process. A precise reverse engineering method generating 2.5D engraving models from 2D artistic images is proposed through the image processing, NURBS interpolation and 2.5D reconstruction methods. To generate 2.5D TechArt models from the art images, boundary points of the images are extracted by using the adaptive median filter and the novel MBF (modified boundary follower) algorithm. Accurate NURBS interpolation of the points generates TechArt CAD models. Performance of the developed system has been confirmed through the quick turnaround 2.5D engraving simulation linked with the commercial CAD/CAM system.