• 제목/요약/키워드: NTRK2

검색결과 8건 처리시간 0.02초

Expression of brain-derived neurotrophic factor and neurotrophic tyrosine receptor kinase-2 in bovine testes

  • Jaewoo Choi;Heejun Jung;Yubin Song;Minjung Yoon
    • 한국동물생명공학회지
    • /
    • 제39권3호
    • /
    • pp.194-200
    • /
    • 2024
  • Background: Brain-derived neurotrophic factor (BDNF) and its receptor, neurotrophic tyrosine receptor kinase-2 (NTRK2), are well known for their roles in the central nervous and animal reproductive systems. Several studies have observed the extensive expression of BDNF and NTRK2 in non-neuronal tissues, especially reproductive organs. However, most of these studies focused on ovarian development and regulation; thus, scientific research on BDNF and NTRK2 in males is required to determine their roles in the male reproductive system. Therefore, this study aimed to investigate BDNF and NTRK2 expression in bovine testes. Methods: Testes were collected from six Hanwoo bulls (6-8 months old). Reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed to investigate the mRNA expression of BDNF and NTRK2 in the testes. Western blot analysis was performed to verify the cross-reactivity of BDNF and NTRK2 antibodies with bovine testicular tissues. Immunohistochemistry was conducted to determine BDNF and NTRK2 protein expression in the testes. Results: RT-PCR analysis revealed BDNF and NTRK2 mRNA expression in bovine testes. In Western blotting, BDNF and NTRK2 protein bands were observed at 32 and 45 kDa, respectively. Immunofluorescence demonstrated BDNF expression in the nuclei of spermatogonia and Sertoli cells as well as in the cytoplasm of Leydig cells. NTRK2 was exclusively expressed in Sertoli cells. These results suggest that BDNF plays a potential role in spermatogenesis via BDNF and NTRK2 signaling in bovine testes, a finding supported by previous results in different animal species. Conclusions: The expression patterns of BDNF and NTRK2 indicate their functional importance in the bovine reproductive system.

Up-Regulation of Glutathione Biosynthesis in NIH3T3 Cells Transformed with the ETV6-NTRK3 Gene Fusion

  • Kim, Su-Jung;Kim, Hong-Gyum;Lim, Hye-Won;Park, Eun-Hee;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.131-136
    • /
    • 2005
  • The ETV6-NTRK3 gene fusion, first identified in the chromosomal translocation in congenital fibrosarcoma, encodes a chimeric protein tyrosine kinase with potent transforming activity. ETV6-NTRK3-dependent transformation involves the joint action of NTRK3 signaling pathways, and aberrant cell cycle progression resulting from activation of Mek1 and Akt. The level of glutathione (GSH) was found to be markedly increased in ETV6-NTRK3-transformed NIH3T3 cells. The activities of the two GSH biosynthetic enzymes as well as of glutathione peroxidase, together with their mRNAs, were also higher in the transformed cells. The transformed cells were able to grow in the presence of GSH-depleting agents, whereas the control cells were not. L-Buthionine-(S,R)-sulfoximine (BSO) inhibited activation of Mek1 and Akt in the transformed NIH3T3 cells. These observations imply that up-regulation of GSH biosynthesis plays a central role in ETV6-NTRK3-induced transformation.

Characterization of KRC-108 as a TrkA Kinase Inhibitor with Anti-Tumor Effects

  • Lee, Hyo Jeong;Moon, Yeongyu;Choi, Jungil;Heo, Jeong Doo;Kim, Sekwang;Nallapaneni, Hari Krishna;Chin, Young-Won;Lee, Jongkook;Han, Sun-Young
    • Biomolecules & Therapeutics
    • /
    • 제30권4호
    • /
    • pp.360-367
    • /
    • 2022
  • Tropomyosin receptor kinase A (TrkA) protein is a receptor tyrosine kinase encoded by the NTRK1 gene. TrkA signaling mediates the proliferation, differentiation, and survival of neurons and other cells following stimulation by its ligand, the nerve growth factor. Chromosomal rearrangements of the NTRK1 gene result in the generation of TrkA fusion protein, which is known to cause deregulation of TrkA signaling. Targeting TrkA activity represents a promising strategy for the treatment of cancers that harbor the TrkA fusion protein. In this study, we evaluated the TrkA-inhibitory activity of the benzoxazole compound KRC-108. KRC-108 inhibited TrkA activity in an in vitro kinase assay, and suppressed the growth of KM12C colon cancer cells harboring an NTRK1 gene fusion. KRC-108 treatment induced cell cycle arrest, apoptotic cell death, and autophagy. KRC-108 suppressed the phosphorylation of downstream signaling molecules of TrkA, including Akt, phospholipase Cγ, and ERK1/2. Furthermore, KRC-108 exhibited antitumor activity in vivo in a KM12C cell xenograft model. These results indicate that KRC-108 may be a promising therapeutic agent for Trk fusion-positive cancers.

분비성 유방암과 유사한 침샘 암종 (Salivary Gland Carcinoma Mimicking Secretory Breast Cancer)

  • 송창면;정선민;신수진;태경
    • 대한두경부종양학회지
    • /
    • 제33권2호
    • /
    • pp.101-105
    • /
    • 2017
  • Mammary analogue secretory carcinoma (MASC) of the salivary gland is a newly classified pathologic entity since 2010. Prior to its recognition, MASC was diagnosed as low-grade cystadenocarcinoma, acinic cell carcinoma, and mucoepidermoid carcinoma. MASC shares common histological and genetic characteristics with secretory carcinoma of the breast and has a distinct feature of the ETV6-NTRK3 fusion gene. Treatment of MASC in salivary gland is mainly wide surgical resection of the tumor. Prognosis of MASC is similar to other low-grade salivary gland carcinomas. Herein, we report a case of MASC developed in a parotid gland with a review of the literature.

갑상선암 표적치료의 최신지견 (What's New in Molecular Targeted Therapies for Thyroid Cancer?)

  • 민선영;강현석
    • 대한두경부종양학회지
    • /
    • 제37권2호
    • /
    • pp.1-9
    • /
    • 2021
  • Thyroid cancer refers to various cancers arising from thyroid gland. Differentiated thyroid cancers (DTCs) include papillary, follicular, and Hurthle cell carcinomas and represent cancers retain normal thyroid functions such as iodine uptake. Radioactive iodine (RAI) is generally used for upfront treatment of metastatic DTCs, but RAI refractory DTCs remain to be clinical challenges. Sorafenib and lenvatinib were approved for the treatment of RAI refractory DTCs and more recently, genomics-based targeted therapies have been developed for NTRK and RET gene fusion-positive DTCs. Poorly differentiated and anaplastic thyroid cancers (ATCs) are extremely challenging diseases with aggressive courses. BRAF/MEK inhibition has been proven to be highly effective in BRAF V600E mutation-positive ATCs and immune checkpoint inhibitors have shown promising activities. Medullary thyroid cancers, which arise from parafollicular cells of thyroid, represent a unique subset of thyroid cancer and mainly driven by RET mutation. In addition to vandetanib and cabozantinib, highly specific RET inhibitors such as selpercatinib and pralsetinib have demonstrated impressive activity and are in clinical use.

이하선에 발생한 유선 유사 분비성 암종 1예 (A Case of Mammary Analogue Secretory Carcinoma of the Parotid Gland)

  • 강민지;여성철;원성준;박정제
    • 임상이비인후과
    • /
    • 제29권2호
    • /
    • pp.290-294
    • /
    • 2018
  • Mammary analogue secretory carcinoma (MASC) has histologic similarities to not only acinic cell carcinoma but also other low grade cystadenocarcinoma, and has similar features to breast secretory carcinoma. MASC was not described through the existing classification system previously. But, MASC was distinguished from other salivary gland tumors by Skalova et al. in 2010, MASC has ets variant gene 6-neurotrophic tyrosine kinase, receptor, type 3 (ETV6-NTRK3) translocation. So far, there are 4 cases of MASC recognized in the head and neck region in Korea. One of the four is a tumor from the submandibular gland, and the other three are of the parotid gland. In this case report, we report a 40-year-old man with a MASC of the parotid gland, who presented with right infra-auricular mass.

Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome

  • Yi Wang;Shuwen Chen;Min Xue;Jinhu Ma;Xinrui Yi;Xinyu Li;Xuejin Lu;Meizi Zhu;Jin Peng;Yunshu Tang;Yaling Zhu
    • Animal Bioscience
    • /
    • 제37권8호
    • /
    • pp.1317-1332
    • /
    • 2024
  • Objective: Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. Methods: Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. Results: In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. Conclusion: Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.

Genome-wide analysis of Hanwoo and Chikso populations using the BovineSNP50 genotyping array

  • Song, Jun?Seok;Seong, Ha?Seung;Choi, Bong?Hwan;Lee, Chang?Woo;Hwang, Nam?Hyun;Lim, Dajeong;Lee, Joon?Hee;Kim, Jin Soo;Kim, Jeong?Dae;Park, Yeon?Soo;Choi, Jung?Woo;Kim, Jong?Bok
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1373-1382
    • /
    • 2018
  • Hanwoo and Chikso are classified as Korean native cattle breeds that are currently registered with the Food and Agriculture Organization. However, there is still a lack of genomic studies to compare Hanwoo to Chikso populations. The objective of this study was to perform genome-wide analysis of Hanwoo and Chikso populations, investigating the genetic relationships between these two populations. We genotyped a total of 319 cattle including 214 Hanwoo and 105 Chikso sampled from Gangwon Province Livestock Technology Research Institute, using the Illumina Bovine SNP50K Beadchip. After performing quality control on the initially generated datasets, we assessed linkage disequilibrium patterns for all the possible SNP pairs within 1 Mb apart. Overall, average $r^2$ values in Hanwoo (0.048) were lower than Chikso (0.074) population. The genetic relationship between the populations was further assured by the principal component analysis, exhibiting clear clusters in each of the Hanwoo and Chikso populations, respectively. Overall heterozygosity for Hanwoo (0.359) was slightly higher than Chikso (0.345) and inbreeding coefficient was also a bit higher in Hanwoo (-0.015) than Chikso (-0.035). The average $F_{ST}$ value was 0.036 between Hanwoo and Chikso, indicating little genetic differentiation between those two breeds. Furthermore, we found potential selection signatures including LRP1B and NTRK2 genes that might be implicated with meat and reproductive traits in cattle. In this study, the results showed that both Hanwoo and Chikso populations were not under severe level of inbreeding. Although the principal component analysis exhibited clear clusters in each of the populations, we did not see any clear evidence that those two populations are highly differentiated each other.