• Title/Summary/Keyword: NTP

Search Result 109, Processing Time 0.031 seconds

Effective timing synchronization methods for femtocell (펨토 기지국의 효과적인 타이밍 동기방안)

  • Shin, Jun-Hyo;Kim, Jung-Hun;Jeong, Seok-Jong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.237-241
    • /
    • 2008
  • Femtocells are cellular access points that connect to a mobile operator's network using residential DSL or cable broadband connections. They have been developed to work with a range of different cellular standards including CDMA, GSM and UMTS. Like legacy base station, the frequency accuracy and phase alignment is necessary for ensuring the quality of service (QoS) for applications such as voice, real-time video, wireless hand-off, and data over a converged access medium at the femtocell. But, the GPS has some problem to be used at the femtocell, because it is difficult to set-up, depends on the satellite condition, and very expensive. So, some techniques are discussed to alternate with the legacy GPS system. NTP, PTP, Synchronous Ethernet use the ethernet to synchronize distributed clocks in packet networks. AGPS support reliable position information than the legacy GPS in poor signal conditions. But, These method also have some problems. So, hybrid timing method like A-GPS+PTP and TV+GPS was developed to make up the weak point of GPS. This paper introduces the each method and compare each other and y propose much better solution for timing synchronization at the Femtocell

  • PDF

Comparative analysis of AGPase proteins and conserved domains in sweetpotato (Ipomoea batatas (L.) Lam.) and its two wild relatives

  • Nie, Hualin;Kim, Sujung;Kim, Jongbo;Kwon, Suk-Yoon;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • Conserved domains are defined as recurring units in molecular evolution and are commonly used to interpret the molecular function and biochemical structure of proteins. Herein, the ADP-glucose pyrophosphorylase (AGPase) amino acid sequences of three species of the Ipomoea genus [Ipomoea trifida, I. triloba, and I. batatas (L.) Lam. (sweetpotato)] were identified to investigate their physicochemical and biochemical characteristics. The molecular weight, isoelectric point, instability index, and grand average of hyropathy markedly differed among the three species. The aliphatic index values of sweetpotato AGPase proteins were higher in the small subunit than in the large subunit. The AGPase proteins from sweetpotato were found to contain an LbH_G1P_AT_C domain in the C-terminal region and various domains (NTP_transferase, ADP_Glucose_PP, or Glyco_tranf_GTA) in the N-terminal region. Conversely, most of its two relatives (I. trifida and I. triloba) were found to only contain the NTP_transferase domain in the N-terminal region. These findings suggested that these conserved domains were species-specific and related to the subunit types of AGPase proteins. The study may enable research on the AGPase-related specific characteristics of sweetpotatoes that do not exist in the other two species, such as starch metabolism and tuberization mechanism.

A Study of security threats and response of Distribute Reflection Denial of Service Attack using IP spoofing (IP Spoofing을 이용한 분산 반사 서비스 거부 공격의 보안 위협과 대응 실태 연구)

  • Hong, YunSeok;Han, Wooyoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.143-145
    • /
    • 2022
  • With the spread of the Internet around the world, devices connected to the Internet are gradually increasing. In addition, the number of distributed reflection service attacks (DrDoS), an attack that maliciously requests large responses by deceiving IPs as if the attacker was a victim, using vulnerabilities in application protocols such as DNS, NTP, and CLDAP, is increasing rapidly. It is believed that the security threat of distributed reflection service attacks will not disappear unless ISPs establish appropriate countermeasures to IP Spoofing. Therefore, this paper describes the security threat and response status of distributed reflection service attacks based on IP Spoofing.

  • PDF

CoAP-based Time Synchronization Algorithm in Sensor Network (센서 네트워크에서의 CoAP 기반 시각 동기화 기법)

  • Kim, Nac-Woo;Son, Seung-Chul;Park, Il-Kyun;Yu, Hong-Yeon;Lee, Byung-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.39-47
    • /
    • 2015
  • In this paper, we propose a new time synchronization algorithm using CoAP(constrained-application protocol) in sensor network environment, which handles a technique that synchronizes an explicit timestamp between sensor nodes not including an additional module for time-setting and sensor node gateway linked to internet time server. CoAP is a standard protocol for sensor data communication among sensor nodes and sensor node gateway to be built much less memory and power supply in constrained network surroundings including serious network jitter, packet losses, etc. We have supplied an exact time synchronization implementation among small and cheap IP-based sensor nodes or non-IP based sensor nodes and sensor node gateway in sensor network using CoAP message header's option extension. On behalf of conventional network time synchronization method, as our approach uses an exclusive protocol 'CoAP' in sensor network, it is not to become an additional burden for synchronization service to sensor nodes or sensor node gateway. This method has an average error about 2ms comparing to NTP service and offers a low-cost and robust network time synchronization algorithm.

Phenotypic Suppression of Rad53 Mutation by CYC8 (CYC8에 의한 rad53 돌연변이의 표현형 억제에 대한 연구)

  • Park, Kyoung-Jun;Choi, Do-Hee;Kwon, Sung-Hun;Kim, Joon-Ho;Bae, Sung-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • RAD53 functions as an effector kinase of checkpoint pathways in Saccharomyces cerevisiae, which plays a central role to regulate many downstream cellular processes in response to DNA damage. It also involves in transcriptional activation of various genes including RNR genes which encode the key enzyme required for dNTP synthesis. In this study, we identified CYC8 as a suppressor for the hydroxyurea sensitivity of $rad53{\Delta}$ mutation. $Rad53{\Delta}$ mutant transformed with a multi-copy plasmid containing CYC8 showed increased hydroxyurea resistance. In contrast, TUP1 which forms a complex with CYC8 did not function as a suppressor. In the case of mutations, both $cyc8{\Delta}$ and $tup1{\Delta}$ suppressed hydroxyurea sensitivity of $rad53{\Delta}$. Since CYC8 can propagate as a prion in yeast, overexpression of CYC8 induced misfolding of the normal CYC8 proteins, resulting in dominant cyc8-phenotype. Therefore, it is suggested that CYC8 can act as a multi-copy suppressor due to its prion property. It was observed that the levels of RNR transcription were increased in the yeast strains containing either multi-copies of CYC8 gene or $cyc8{\Delta}$ mutation, suggesting that the increased level of RNR will elevate the intracellular pools of dNTPs, which, in turn, suppress the phenotype of $rad53{\Delta}$ mutation.

HIV-1 RT (reverse transcriptase) 저해제에 대한 내성 발현 기전

  • 임광진
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.67-69
    • /
    • 1995
  • reverse transcription은 AIDS를 일으킨다고 알려진 바이러스인 HIV-1의 번식에는 필수적이나 인체 세포에는 필수적이 아니기에 이 단계를 표적으로 하는 AIDS 치료제가 우선적으로 개발되었다. 그 단계에 필요한 효소가 바이러스에 의해 만들어진 RT이며 이 효소의 작용을 저해하는 nucleoside 유도체들인 AZT, DDC, DDI 들이 현재 AIDS 환자의 치료에 사용되고 있다. 이들 nucleoside 유도체들은 세포안으로 들어가 triphosphate 형태로 변화된 후 dNTP와 상경적으로 경쟁하며 합성 중인 바이러스의 DNA에 들어가 DNA의 합성을 정지시켜 바이러스의 증식을 억제한다. 그러나, 이들 nucleoside 유도체들은 치료용량에서 심한 독성을 나타낼 뿐만 아니라 장기 투여시 내성을 나타내는 바이러스가 생겨나 AIDS의 치료를 불가능하게 하고 있다.

  • PDF

Purification, Characterization and Cellular Localization of Klebsiella aerogenes UreG Protein

  • Lee, Mann-Hyung
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.311-315
    • /
    • 1995
  • The K. aerogenes ureal gene product was previously shown to facilitate assembly of the crease metallocenter (Lee, M. H., Mulrooney, S. B., Renner, M. J., Markowicz, Y., and Hausinger, R. P. (1992) J. Bacteriol. 174, 4324-4330). UreG protein has now been purified and characterized. Although the protein is predicted to possess a putative NTP-binding P-loop motif, equilibrium dialysis studies showed negative results. Immunogold electron microscopic studies using polyclonal antibodies directed against UreG protein confirm that UreG is located in the cytoplasm as predicted in the DNA sequence.

  • PDF

Parameters Affecting Polymerase Chain Reaction in RAPD Analysis of Pleurotus spp. (느타리버섯속(屬)의 DNA 다형성분석(多型性分析)에 영향(影響)을 미치는 PCR 조건(條件))

  • Kim, Beom-Gi;Jeong, Mi-Jeong;Lee, Chang-Soo;Lee, Hee-Kyung;Yoo, Young-Bok;Ryu, Jin-Chang
    • The Korean Journal of Mycology
    • /
    • v.23 no.3 s.74
    • /
    • pp.202-208
    • /
    • 1995
  • This study describes the effects of several components on PCR amplification used for RAPD. We used different concentrations of reaction components to obtaine discrete and reproducible PCR products from Pleurotus cornucopiae. The optimum concentrations of reaction components were found to be 80 ng of template DNA, 30 pmole of 10-mer primer, $200\;{\mu}M$ dNTP, 2mM $MgCl_2$, 50 mM KCl, 10 mM Tris-HCl(pH 9.0), 0.1% Triton X-100, 1.5 unit of Taq DNA polymerase (promega) in $50\;{\mu}l$ reaction volume. The optimum annealing temperature was $35^{\circ}C$. These results proved to be valuable for characterization of Pleurotus spp.

  • PDF

Attack Scenarios and Countermeasures using CoAP in IoT Environment (IoT기기에서 SSDP 증폭 공격을 이용한 공격기법 및 대응 방안)

  • Oh, Ju-Hye;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.33-38
    • /
    • 2016
  • DDoS attack has been continuously utilized that caused the excessively large amount of traffic that network bandwidth or server was unable to deal with paralyzing the service. Most of the people regard NTP as the biggest cause of DDoS. However, according to recently executed DDoS attack, there have been many SSDP attack in the use of amplified technique. According to characteristics of SSDP, there is no connection for making a forgery of source IP address and amplified resources feasible. Therefore, it is frequently used for attack. Especially, as it is mostly used as a protocol for causing DDoS attack on IoT devices that constitute smart home including a wireless router, media server, webcam, smart TV, and network printer. Hereupon, it is anticipated for servers of attacks to gradually increase. This might cause a serious threat to major information of human lives, major government bodies, and company system as well as on IoT devices. This study is intended to identify DDoS attack techniques in the use of weakness of SSDP protocol occurring in IoT devices and attacking scenario and counter-measures on them.