• Title/Summary/Keyword: NTC 서미스터

Search Result 34, Processing Time 0.035 seconds

Fabrication and Electrical Properties of Ni-Mn-Co-Fe Oxide Thick Film NTC Thermistors (Ni-Mn-Co-Fe 산화물 후막 NTC 서미스터의 제조 및 전기적 특성)

  • Park, Kyeong-Soon;Bang, Dae-Young;Yun, Sung-Jin;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.912-918
    • /
    • 2002
  • Ni-Mn-Co-Fe oxide thick films were coated on an alumina substrate by screening printing technique. The microstructure and electrical properties of the thick films, as a function of composition and sintering temperature, were investigated. The components of the NTC thick films sintered at 1150${\circ}C$ were distributed homogeneously. On the other hand, in the case of the NTC thick films sintered at 1200 and 1250${\circ}C$, Co element was distributed homogeneously, but Ni, Mn and Fe elements were distributed heterogeneously, resulting in the formation of Ni rich and Mn-Fe rich regions. All the thick film NTC thermistors prepared showed a linear relationship between log resistance (log R) and the reciprocal of absolute temperature (1/T), indicative of NTC characteristics. At a given NiO and $Mn_3O_4$ content, the resistance, B constant and activation energy of $(Ni_{1.0}Mn_{1.0}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) and $(Ni_{0.75}Mn_{1.25}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) thermistors increased with increasing $Fe_2O_3$ content.

The Electrical Properties and Aging Effects on the Composition of Mn-Co-Ni NTC Thermistors (Mn-Co-Ni 산화물계 NTC 서미스터의 조성에 따른 전기적 특성과 경시변화)

  • 권정범;정용근;엄우식;송준광;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1174-1179
    • /
    • 2001
  • Mn-Co-Ni oxide system has been used as the NTC thermistors for normal temperature applications. Mn-Co-Ni oxide-based thermistors with various compositions were sintered at 1250$^{\circ}C$ for 3 hours and then maintained at 1000$^{\circ}C$ for 3 hours. The electrical properties of the thermistors fabricated were measured. In particular the MCN622 composition (Mn$_3$O$_4$60 wt%, Co$_3$O$_4$20 wt%, NiO 20wt%) exhibited the lowest resistivity and relatively high B constant. The MCN721 composition (Mn$_3$O$_4$70wt%, Co$_3$O$_4$20wt%, NiO 10 wt%) showed the higher resistivity than any other compositions. The aging properties of each composition showed comparatively stable characteristics within ${\pm}$2%.

  • PDF