• Title/Summary/Keyword: NS-CNTs

Search Result 3, Processing Time 0.042 seconds

Acoustic Performance Enhancement in PVDF Speakers by Using Buckled Nanospring Carbon Nanotubes

  • Ham, Sora;Lee, Yun Jae;Kim, Jung-Hyuk;Kim, Sung-Ryong;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.360-365
    • /
    • 2019
  • A polyvinylidene fluoride (PVDF)-based film speaker is successfully fabricated with enhanced bass sound by incorporating buckled nanospring carbon nanotubes (NS-CNTs) as fillers. Various concentrations up to 1-7 wt% of uniformly dispersed buckled NS-CNTs are loaded to increase the beta (β)-phase fraction, crystallinity, and dielectric constant of the speaker, and this results in the bass part enhancement of about 19 dB full scale (dBFS) at 7 wt% filler loading of the piezoelectric film speaker.

Effects of Nanoparticles on the Fracture Toughness of Cement Mortar (나노 입자가 시멘트 모르타르의 파괴인성치에 미치는 영향)

  • Seung Won Choi;Cho Won Baek;Seon Yeol Lee;Van Thong Nguyen;Dong Joo Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.332-340
    • /
    • 2023
  • This study investigated the effects of nanoparticles on the fracture toughness of cement mortar. Three-point bending tests, compressive tests, and slump tests were conducted on cement mortars reinforced with carbon nanotubes(CNTs), nanosilica(NS), and nano calcium carbonate(NC), respectively. Cement mortar with a water-to-cement ratio and a sand-to-cement ratio of 0.45 and 1.5, respectively, and reinforced with 0 and 2 vol.% of 19.5 mm steel fibers, respectively, was used. Reinforcement with nanoparticles partially improved the fracture toughness and compressive strength of the cement mortar. However, in the case of cement mortar reinforced with steel fibers, the reinforcement with nanoparticles was found to reduce the flowability of the mortar, adversely affecting the dispersion of steel fibers, and ultimately leading to a decrease in fracture toughness, contrary to the intended enhancement. Additional research is needed to improve the decrease in mortar fluidity caused by the reinforcement with nanoparticles.

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF