• Title/Summary/Keyword: NS solver

Search Result 5, Processing Time 0.02 seconds

Parallel Hybrid Particle-Continuum (DSMC-NS) Flow Simulations Using 3-D Unstructured Mesh

  • Wu J.S.;Lian Y.Y.;Cheng G.;Chen Y.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a recently proposed parallel hybrid particle-continuum (DSMC-NS) scheme employing 3D unstructured grid for solving steady-state gas flows involving continuum and rarefied regions is described [1]. Substitution of a density-based NS solver to a pressure-based one that greatly enhances the capability of the proposed hybrid scheme and several practical experiences of implementation learned from the development and verifications are highlighted. At the end, we present some simulation results of a realistic RCS nozzle plume, which is considered very challenging using either a continuum or particle solver alone, to demonstrate the capability of the proposed hybrid DSMC-NS method.

  • PDF

Numerical Investigation of Dual Mode Ramjet Combustor Using Quasi 1-Dimensional Solver (근사 1차원 솔버를 이용한 이중모드 램제트 연소실 해석)

  • Yang, Jaehoon;Nam, Jaehyun;Kang, Sanghun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.909-917
    • /
    • 2021
  • In this work, a one-dimensional combustor solver was constructed for the scramjet control m odel. The governing equations for fluid flow, Arrhenius based combustion kinetics, and the inje ction model were implemented into the solver. In order to validate the solver, the zero-dimensi onal ignition delay problem and one-dimensional scramjet combustion problem were considered and showed that the solver successfully reproduced the results from the literature. Subsequentl y, a ramjet analysis algorithm under subsonic speed conditions was constructed, and a study o n the inlet Mach number of the combustor was carried out through the thermal choking locatio ns at ram conditions. In such conditions, a model for precombustion shock train analysis was i mplemented, and the algorithm for transition section analysis was introduced. In addition, in or der to determine the appropriateness of the ram mode analysis in the code, the occurrence of a n unstart was studied through the length of the pseudo-shock in the isolator. A performance a nalysis study was carried out according to the geometry of the combustor.

A zonal hybrid approach coupling FNPT with OpenFOAM for modelling wave-structure interactions with action of current

  • Li, Qian;Wang, Jinghua;Yan, Shiqiang;Gong, Jiaye;Ma, Qingwei
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.381-407
    • /
    • 2018
  • This paper presents a hybrid numerical approach, which combines a two-phase Navier-Stokes model (NS) and the fully nonlinear potential theory (FNPT), for modelling wave-structure interaction. The former governs the computational domain near the structure, where the viscous and turbulent effects are significant, and is solved by OpenFOAM/InterDyMFoam which utilising the finite volume method (FVM) with a Volume of Fluid (VOF) for the phase identification. The latter covers the rest of the domain, where the fluid may be considered as incompressible, inviscid and irrotational, and solved by using the Quasi Arbitrary Lagrangian-Eulerian finite element method (QALE-FEM). These two models are weakly coupled using a zonal (spatially hierarchical) approach. Considering the inconsistence of the solutions at the boundaries between two different sub-domains governed by two fundamentally different models, a relaxation (transitional) zone is introduced, where the velocity, pressure and surface elevations are taken as the weighted summation of the solutions by two models. In order to tackle the challenges associated and maximise the computational efficiency, further developments of the QALE-FEM have been made. These include the derivation of an arbitrary Lagrangian-Eulerian FNPT and application of a robust gradient calculation scheme for estimating the velocity. The present hybrid model is applied to the numerical simulation of a fixed horizontal cylinder subjected to a unidirectional wave with or without following current. The convergence property, the optimisation of the relaxation zone, the accuracy and the computational efficiency are discussed. Although the idea of the weakly coupling using the zonal approach is not new, the present hybrid model is the first one to couple the QALE-FEM with OpenFOAM solver and/or to be applied to numerical simulate the wave-structure interaction with presence of current.

3차원 표면효과익의 자유표면 효과에 관한 수치연구

  • Gwak, Seung-Hyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.79-86
    • /
    • 1998
  • A three-dimensional WIG (Wing In Ground effect) moving above free surface is numerically studied by means of finite difference techniques. The air flow field around the WIG is analyzed by MAC (Marker & Cell) method, and interactions between WIG and the free surface are appeared as the variation of pressure distribution acting on the free surface. To analyze the wavemaking phenomena by those pressure distributions, the NS (Navier-Stokes) solver is employed in which nonlinearities of the free surface conditions can be included. Through the numerical simulation, Cp values and lift/drag ratio are carefully reviewed by changing the height/chord ratio. The section shape of model is NACA0012 with the span/chord ratio of 3.0. Through computational results, it is confirmed that the effect of free surface is small enough to treat it as a rigid wavy wall.

  • PDF

A Study on Blended Inlet Body Design for a High Supersonic Unmanned Aerial Vehicle

  • You, Lianxing;Yu, Xiongqing;Li, Hongmei
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.260-267
    • /
    • 2016
  • The design process of blended inlet body (BIB) for the preliminary design of a near-space high supersonic unmanned aerial vehicle (HSUAV) is presented. The mass flow rate and cowl area of inlet at a design point are obtained according to the cruise condition of the HSUAV. A mixed-compression axisymmetric supersonic inlet section with a fixed geometry reasonably matching the high supersonic cruise state is created by using the inviscid theory of aerodynamics. The inlet section is optimized and used as a baseline section for the BIB design. Three BIB concepts for the HSUAV are proposed, and their internal aerodynamic characteristics of inlet are evaluated using Euler computational fluid dynamics (Euler CFD) solver. The preferred concept is identified, in which the straight leading edge of the baseline HSUAV configuration is modified into the convex leading edge to accommodate the inlet and meet the requirements of the cowl area to capture the sufficient air flow. The total recovery of inlet for the preferred BIB concept and the aerodynamic characteristics of the modified HSUAV configuration are verified using Navier-Stokes computational fluid dynamics (NS CFD) solver. The validation indicates that the preferred BIB concept can meet both the requirements of the inlet and aerodynamic performance of the HSUAV.