• Title/Summary/Keyword: NPS pollution load

Search Result 59, Processing Time 0.025 seconds

Application of the Surface Cover Materials for Reduction of NPS Pollution from Actual Cultivation (실경작지 밭의 비점오염물질 저감을 위한 지표피복재 적용)

  • Shin, Min Hwan;Jang, Jeong Ryeol;Jung, Young Hun;Kum, Dong Hyuk;Won, Chul Hee;Lee, Su In;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.31-38
    • /
    • 2014
  • Four actual cultivations were prepared and a variety of soybean was cultivated. A H-flume, an automatic water level gauge and an automatic water sampler were installed at the outlet of each plot equipped for the measurement of flow rate and its water quality. The amount of rainfall of the study area in 2013 was measured as 975.6 mm which was much lower than the annual average rainfall of 1,271.8 mm, resulting in less occurrences in rainfall-runoff events. Rainfall-runoff events were occurred three times during the rainfall event of 4~5 July, 23 and 24 August. The characteristics of NPS pollution discharge of the plots and the reduction effect of the selected BMPs were analyzed during these events. The reduction effect of straw mat and soil amendments (Polyacrylamide (PAM) and Gypsum) on runoff ratio ranged between 38.2 and 92.9% (average 71.6%). The NPS pollution load reduced between 27.7 and 95.1% (average 70.0%) by the application of rice straw mat and soil conditioner when compared with that of control plot. Soybean yield (2,133.3 kg/ha) of the straw mat covered plots increased by 14.3% when compared with control (1,866.7 kg/ha). The effect of straw mat on the yield was not economically viable if the material and accompanying labor costs were considered. The data collected and analyzed on different soil textures and crops in this study are expected to be a fundamental reference for the expansion of the results to the application nationwide and the development of NPS pollution management policies.

Comparison of NPS Pollution Characteristics between Snowmelt and Rainfall Runoff from a Highland Agricultural Watershed (고랭지 밭 유역에서 융설과 강우유출로 발생하는 비점오염원의 특성 비교)

  • Choi, Yong-Hun;Won, Chul-Hee;Park, Woon-Ji;Shin, Min-Hwan;Shin, Jae-Young;Lee, Su-In;Choi, Joong-Dae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.523-530
    • /
    • 2012
  • Runoff, NPS pollution load and flow-weighted mean concentration (FWMC) occurred by snowmelt and rainfall runoff were compared by a variance analysis. Snowmelt runoff ranged between 1,449 and $19,921m^3$. The peak snowmelt runoff was similar to the runoff that occurred by about 40mm/day rainfall. And average snowmelt runoff was not significantly different from the runoff that occurred by 25.5 mm/day rainfall. Average values of SS loads and FWMCs were 5,438 kg/day and 954.9 mg/L, respectively. SS loads and FWMCs were in the similar range with those that occurred by 39.0 mm/day and 53.0 mm/day rainfall, respectively. Daily SS and COD loads and FWMCs occurred by snowmelt and rainfall were analyzed not to be significantly different. Overall assessment led that the NPS pollution loads by snowmelt runoff had a similar characteristics with the loads by about 40 mm/day rainfall runoff. It was recommended that the agricultural fields in snowy region needs to managed not only for rainfall runoff but also snowmelt runoff for an effective water quality management.

Runoff Characteristics of NPS Pollution on Field in Rainy Season (강우시 밭의 비점오염물질 유출 특성)

  • Won, Chul-hee;Choi, Yong-hun;Shin, Min-hwan;Shin, Dong-suk;Kang, Dong-Gu;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.572-579
    • /
    • 2011
  • We have examined the runoff characteristics of nonpoint source (NPS) in fields. Two monitoring sites were equipped with an automatic velocity meter and water sampler. Monitoring was conducted at fields 1 and field 2 during the rainfall event. Ten rainfall-runoff events were monitored and analyzed during the study period. The results show that runoff occurred if daily rainfall and intensity were higher than 40 mm and 1.6 mm/hr except a few extreme rainfall events with very high intensity. Runoff of field 1 was approximately twice of that of field 2. Event mean concentrations (EMC) and pollution load of analyzed water quality indices were also higher in field 2 than in field 1. Especially, TN load from field 2 was $75.4 mg/m^2$ and was about 5 times higher than that from field 1. Analysis of Pearson correlation coefficient of water quality parameter indicates that besides of TN all items in fields 1 have tight relationship respectively (p < 0.01). But those of fields 2 have a significant (p < 0.05). Estimating units loading of NPS, we suggested that variable such as soil texture, rainfall amount and intensity and slope were needed to be considered from agricultural landuses. The results of this study can be used as a basic data in the development and implementation of total maximum daily loads (TMDL) in Korea.

Contribution of Non-Point Pollution to Water Quality and Runoff Characteristics from Agricultural Area of the Upstream Watersheds of Lake Chinyang

  • Lee, Chun-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.259-267
    • /
    • 2013
  • In this study, non-point source(NPS) contribution was investigated based on flow rates and water qualities of streams into the lake during rainfall events. Event mean concentration(EMC) and the pollution loads were calculated to establish a database for NPS control measurement in the survey area, and so on. The runoff characteristics of NPS were investigated and estimated on the basis of the ratio of an agricultural to forest area in the stream of sub-catch basin during rainfall events. Non-point source pollution loads were also calculated to establish a database for NPS control measure in the upstream lake Chinyang. At a rainfall event, BOD concentrations rise sharply at the early peak time of runoff, however, peaks of TSS concentration were observed at the similar time of peak flow. This was a phenomenon shown at the watersheds caused by forest and geological types. The discharged EMC range was 2.9-4.8 mg/L in terms of BOD. The discharged EMC range was 6.2-8.2 mg/L in terms of SS. The discharged EMCs of T-N and T-P were 1.4-2.5 mg/L and 0.059-0.233 mg/L, respectively. Total BOD loading rate through the 3 tributaries to the lake Chinyang was 1,136 kg/d during dry weather. The upper watershed area of the Nam-river dam in this study was divided into 14 catchment basins based on the Korean guideline for total maximum daily load(TMDL) of water quality pollutants. The higher the agricultural land-use ratio, the more NPS loading rate discharged, but the more occupied a forest area, the lower more NPS loading rate discharged. In an agricultural land-use area more than 20%, the increase of NPS loadings might be dramatically diffused by increasing the integrated complex-use like vinyl-house facilities and fertilizer use etc. according to the effective land-use utilization. The NPS loading rates were BOD 0.3 $kg/ha{\cdot}day$, SS 0.21 $kg/ha{\cdot}day$, TN 0.02 $kg/ha{\cdot}day$, TP 0.005 $kg/ha{\cdot}day$ under less than 10% agricultural land-use. In agricultural land-use of 20%-50%, these values were investigated in the range of 0.32 $kg/ha{\cdot}day$-0.73 $kg/ha{\cdot}day$ for BOD, 0.92 $kg/ha{\cdot}day$-3.32 $kg/ha{\cdot}day$ for SS, 0.70 $kg/ha{\cdot}day$-0.90 $kg/ha{\cdot}day$ TN, 0.03 $kg/ha{\cdot}day$-0.044 $kg/ha{\cdot}day$ for TP.

Effects of Surface Cover and Soil Amendments on the NPS load Reduction from Alpine Fields (고랭지 밭의 비점오염부하 저감을 위한 지표피복재와 토양개량제의 효과)

  • Won, Chul-Hee;Shin, Min-Hwan;Lee, Su-In;Kum, Dong-Hyuk;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.47-53
    • /
    • 2014
  • We investigated the effect of straw mat cover and soil amendments on the reduction of runoff, non-point source pollution load and yield of a Chinese cabbage from alpine fields. Two plots on sandy loam soil were prepared. Experimental treatments were control and rice straw mat cover (3,300 kg/ha)+Polyacrylamide (PAM) (5 kg/ha)+Gypsum (1 ton/ha) (SPG). A variety of Chinese cabbage was cultivated and runoff was monitored during a growing season in 2012. Monitoring was conducted to seven times. Runoff rate of SPG plot was lower than those of control plot. The reduction rate of runoff from SPG plot was 29.4 % compared to control plot. The reduction rate of suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) load of SPG plot was 86.5 %, 34.7 % and 39.1 %, respectively. Yield of a Chinese cabbage from SPG plot (39,646 kg/ha) was greater than that of control plots (28,482 kg/ha). It was concluded that the use of SPG on soil surface could not only reduce the NPS pollution loads in receiving waters but also help increase the crop yield.

Assessing Impact of Reduction of Non-Point Source Pollution by BASINS/HSPF (HSPF를 이용한 비점오염원 삭감에 따른 효과 분석)

  • Bae, Dae-Hye;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.71-78
    • /
    • 2011
  • This paper aims to assessing impact of reduction of non-point source pollution in the Bokha Stream watershed. The BASINS/HSPF model was calibrated and verified for water flow and water qualities using Total Maximum Daily Load 8days data from 2006 to 2007. Accuracy of the BASINS/HSPF models in simulating hydrology and water quality was compared and there were somewhat differences of statistical results, but water flow and water quality were simulated in good conditions over the study period. The applicability of models was tested to evaluate non-point source control scenarios to response hydrology and water quality in the Bokha stream using various measures which include BMPs approach and change of landuse. The evaluation of reduction of non-point source pollution was developed using load-duration curve. Despite strong reduction of non-point source, there are not satiated target quality at low flow season.

Analysis of Pollutant load Reduction Efficiency with Riparian Buffer System Using the SWAT-REMM (SWAT-REMM을 적용한 수변림 조성에 따른 하천오염부하 저감효과 분석)

  • Choi, Youn Ho;Ryu, Ji Chul;Hwang, Ha Sun;Kum, Dong Huyk;Park, Youn Shik;Jung, Young Hun;Choi, Joong Dae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.166-180
    • /
    • 2015
  • Pollutant in watersheds comes from two major sources which are NPS (nonpoint source pollution) and PS (point source pollution). Most of the pollutant can be treated by wastewater treatment plants. However, wastewater treatment plants may not be an appropriate practice to improve water quality for the watersheds with large portion of NPS pollutant and NPS pollution from direct runoff and baseflow has different characteristics. Therefore the practices to improve water quality need to be comprehensive for pollutants by both direct runoff and baseflow. Riparian buffer, one of practices to manage pollutant in watershed, has been applied to reduce pollutant not only from direct runoff but also baseflow. In this study, the scenarios for pollutant reduction by wastewater treat plants and the nitrogen reduction by riparian buffer were simulated using SWAT-REMM to suggest an effective plan for pollutant reduction from baseflow. Riparian buffer provided nitrogen reduction of 0.2~75.0% in YbB watershed and 38.0~47.0% in GbA watershed. The result indicates that riparian buffer is effective to reduce the pollutant especially from baseflow, and it suggested as suitable for the a watershed which WWTP discharge is not capable to reduce enough pollutant.

Analysis of NPS Pollution Loads over Rainfall-Runoff Events from the Silica Mine Site (규사광산 지역의 강우시 비점오염원의 유출분석)

  • Choi, Yong-hun;Won, Chul-hee;Seo, Ji-yeon;Shin, Min-Hwan;Yang, Hee-Jeong;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.413-419
    • /
    • 2010
  • A silica mine monitoring was conducted from March to December in 2008 to measure rainfall, runoff amounts and pollution loads. A total of 13 rainfall-runoff events were measured and analyzed with respect to runoff ratio, pollutant concentration and load, and initial flush. Over rainfall-runoff events, 95% confidence range of SS concentration was 942.5~2,056.2 mg/L. Other measured water quality indices also showed relatively large variation. This wide concentration variation was thought to be caused by the bare working ground of the mine that was used to store, process and transport the mined silica. Total pollution load of the 13 rainfall-runoff events was SS 17,901 kg/ha, $COD_{Cr}$ 160.9 kg/ha, $COD_{Mn}$ 111.24 kg/ha, BOD 79.6 kg/ha, T-N 13.8 kg/ha, T-P 3.5 kg/ha, and TOC 39.3 kg/ha. Initial flush was not well observed except SS. Very high SS concentration and load was occurred when rainfall was large. Therefore, it was recommended to manage the bare ground not to discharge excessive pollutants during wet days by covering the ground or constructing runoff treatment systems such as a sediment basin.

Quantitative Estimation of Pollution Loading from Hwaseong Watershed using BASINS/HSPF (BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가)

  • Jung, Kwang-Wook;Yoon, Chun-G.;Jang, Jae-Ho;Kim, Hyung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.61-74
    • /
    • 2007
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.

Comparison of Non-Point Pollution Occurrence by Amount of Fertilizer Applicetion from Sandy Loam Alpine Fields which Cultivetes Poteto and Radish in Korea (감자와 무를 재배하는 사질양토 고랭지 밭의 시비량에 따른 비점오염 발생량 비교)

  • Choi, Yong Hun;Won, Chul Hee;Park, Woon Ji;Shin, Min Hwan;Shin, Jae Young;Lee, Su In;Yang, Hee Jeong;Choi, Joong Dae
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.40-49
    • /
    • 2012
  • This study was performed to monitor the runoff of sandy soils on alpine uplands between March 2008 and December 2009, and assess non-point source pollution load. The fields were used to cultivete poteto in 2008 and radish in 2009. The fertilizers used in 200S, compared to those used in 2009, contained 2.1 times of nitrogen, 1.9 times of phosphorous, and 2.3 times of potassium. In 2008, the annual pollution load indiceted SS 2,908.47kg/ha/yr, COD 67.95kg/ha/yr, BOD 50.72kg/ha/yr, TN l3.29kg/ha/yr, and TP 9.97kg/ha/yr. In 2009, the annual pollution load indiceted SS 3,908.34kg/ha/yr, COD 225.04kg/ha/yr, BOD 156.96kg/ha/yr, TN 18.88kg/ha/yr, and TP 36.41kg/ha/yr. The amount of fertilizers used was about twice greeter in 2008, but the amounts of TN in pollution load per unit of rainfall were similar by 0.031kg/ha/mm to 0.029kg/ha/mm, whereas the amounts of COD (0.16kg/ha/mm to 0.35kg/ha/mm), BOD (0.12kg/ha/mm to 0.24kg/ha/mm), and TP (0.023kg/ha/mm to 0.057kg/ha/mm) doubled in 2009. We can infer thet the surface covering by the growth of crop mainly affected the transport of T-N through the subsurface flow to reduce non-point source pollution.

  • PDF