• Title/Summary/Keyword: NPS pollution

Search Result 147, Processing Time 0.031 seconds

Analysis of Non-point Pollution Source Removal Efficiencies according to Rainfall Characteristics in Low Impact Development Facilities with Vegetation (식생이 적용된 비점오염 저감시설의 강우 특성에 따른 효율 분석)

  • Ku, Soo-Hwan;Im, Jiyeol;Oa, Seong-Wook;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.247-255
    • /
    • 2017
  • This research was conducted to analyze removal efficiencies of non-point pollution source (NPS) in low impact development (LID) facilities with vegetation. In this research, removal efficiencies of NPS were calculated using rainfall monitoring data for 5 years in grassed swale (GS) and vegetative filter strip (VFS). TSS was greater than other pollutants, and it ranged 11.9 ~ 351.7 mg/L in GS and 12.8 ~ 350.7 mg/L in VFS. Outflow EMCs were reduced than inflow EMCs, overall removal efficiencies of NPS were 67 ~ 86% in GS and 63 ~ 91% in VFS. 50 % reduction efficiency of rainfall runoff was observed between inflow and outflow in each LID facility. TSS removal efficiency in GS and VFS was correlated with rainfall characteristics. The rainfall for TSS removal efficiency over 50% was determined about 31 mm, 34 mm and average rainfall intensity was 3.0 mm/hr, 3.9 mm/hr in GS and VFS. Therefore, GS and VFS were regarded effective LID facilities as removal of pollutants and rainfall runoff. Also, this research result can be used as an important data for management of NPS.

Highly catalysis Zinc MOF-loaded nanogold coupled with aptamer to assay trace carbendazim by SERS

  • Jinling Shi;Jingjing Li;Aihui Liang;Zhiliang Jiang
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.313-327
    • /
    • 2023
  • Zinc metal organic framework (MOFZn)-loaded goad nanoparticles (AuNPs) sol (Au@MOFZn), which was characterized by TEM, Mapping, FTIR, XRD, and molecular spectrum, was prepared conveniently by solvothermal method. The results indicated that Au@MOFZn had a very strong catalytic effect with the nanoreaction of AuNPs formation between sodium oxalate (SO) and HAuCl4. AuNPs in the new indicator reaction had a strong resonance Rayleigh scattering (RRS) signal at 370 nm. The indicator AuNPs generated by this reaction, which had the most intense surface enhanced Raman scattering (SERS) peak at 1621 cm -1. The new SERS/RRS indicator reaction in combination with specific aptamer (Apt) to fabricate a sensitive and selective Au@MOFZn catalytic amplification-aptamer SERS/RRS assay platform for carbendazim (CBZ), with SERS/RRS linear range of 0.025-0.5 ng/mL. The detection limit was 0.02 ng/mL. Similarly, this assay platform has been also utilized to detect oxytetracycline (OTC) and profenofos (PF).

Wash-off Characteristics of NPS Pollutants from Forest Landuse (산림지역의 비점오염물질 유출특성 및 EMC 산정)

  • Choi, Ji-Yeon;Lee, So-Young;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.129-134
    • /
    • 2009
  • As a result of improved wastewater treatment facilities, the point source pollution emitted from human and municipal wastes is greatly decreasing. Conversely, the non-point source (NPS) pollution emanated from city streets, rural homes, suburban development, animal feedlot, croplands, and forestry is rapidly increasing. Practically, the main concern of the government is to control NPS pollutants by means of establishing a long term plan in order to protect the aqua-ecosystem. Studies have been conducted to assess the intensity of NPS from various landuses. In Korea, the data on NPS pollutant loadings are limited to few and broadly categorized landuses unlike in USA wherein specific landuses are available. This research aims to characterize the wash-off characteristics of NPS pollutants from forest landuse. Two sites were monitored during 15 storm events from 04/2008 to 10/2008. Mean $BOD_5$ EMCs are 1.13 mg/L and 0.91 mg/L for the two sites, respectively. The results of this research will be a helpful contribution for the assessment of total NPS pollutant loadings.

Characteristics of Nonpoint Source Pollutant Loads from Forest watershed with Various Water Quality Sampling Frequencies (수질샘플빈도에 따른 산림유역의 비점원오염부하특성)

  • Shin, Min-Hwan;Shi, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • A monsoon season monitoring data from June to September, 2005 of a small forested watershed located at the upstream of the North Han River system in Korea was conducted to analyze the flow variations, the NPS pollutant concentrations, and the pollution load characteristics with respect to sampling frequencies. During the 4-month period, 1,423 mm or 79.2% of annual rainfall(1,797 mm) were occurred and more than 77%, 54% and 68% of annual T-N, $NO_3$-N and T-P loads discharged. Flow rate was continuously measured with automatic velocity and water level meters and 58 water quality samples were taken and analyzed. It was analyzed that the flow volume by random measurement varied very widely and ranged from 79% to 218% of that of continuous measurement. It was recommended that flow measurement of small forested watersheds should be continuously measured with automated flow meters to precisely measure flow rates. Flow-weighted mean concentrations of T-N, $NO_3$-N and T-P during the period were 2.114 mg/L, 0.836 mg/L, and 0.136 mg/L, respectively. T-N, $NO_3$-N and T-P loads were sensitive to the number of samples. And it was analyzed that in order to measure the pollution load within the error of 10% to the true load, the rate of sampling frequency should be higher than 89.7% of the sample numbers that were required to compute the true pollution load. If it is compared to selected foreign research results, about 10 water samples for each rainfall event were needed to compute the pollution load within 10% error. It is unlikely in Korea and recommended that thorough NPS pollution monitoring studies are required to develop the standard monitoring procedures for reliable NPS pollution quantification.

Investigating Ephemeral Gully Erosion Heads Due To Overland Flow Concentration in Nonpoint Source Pollution Control (비점오염원 관리에서 지표수 집중화로 인한 구강 침식점 조사 방법 연구)

  • Kim, Ik-Jae;Son, Kyong-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.454-458
    • /
    • 2007
  • Nonpoint source (NPS) pollution is a serious problem causing the degradation of soil and water quality. Concentrated overland flow is the primary transport mechanism for a large amount of NPS pollutants from hillslope areas to downslope areas in a watershed. In this study, a soil erosion model, nLS model, to identify transitional overland flow regions (i.e., ephemeral gully head areas) was developed using the kinematic wave overland flow theory. Spatial data, including digital elevation models (DEMs), soil, and landcover, were used in the GIS-based model algorithm. The model was calibrated and validated using gully head locations in a large agricultural watershed, which were identified using 1-m aerial photography. The model performance was better than two previous approaches; the overall accuracy of the nLS model was 72 % to 87 % in one calibration subwatershed and the mean overall accuracy was 75 to 89 % in four validation subwatersheds, showing that the model well predicted potential transitional erosion areas at different watersheds. However, the user accuracy in calibration and validation was still low. To improve the user accuracy and study the effects of DEM resolution, finer resolution DEMs may be preferred because DEM grid is strongly sensitive to estimating model parameters. Information gained from this study can improve assessing soil erosion process due to concentrated overland flow as well as analyze the effect of microtopographic landscapes, such as riparian buffer areas, in NPS control.

  • PDF

Assessing Nonpoint Sources Pollution Affected by Regulating Gate and Liquid Manure Application in Small Agricultural Watershed (제수문 영향 및 액비시용 증가에 따른 농업소유역에서의 비점오염원 특성 평가)

  • Song, Jae-Do;Jang, Taeil;Son, Jae-Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.31-38
    • /
    • 2016
  • The purpose of this study was to assess nonpoint sources (NPS) pollution affected by liquid manure and regulating gate in a small agricultural watershed. The study area, which is a wide plain farmland, was operating by the Buyong regulating gate in order to maintain irrigation water level during irrigation period. Consequentially, runoff only occurs through the gate at each event in rainy season for avoiding farmland inundation. In addition, the usage ratio of liquid manure in the study area has been increased greatly since 2014. Discharge loads at the Hwaingsan bridge subwatershed were 1.2 times for T-N, 4-10 times for T-P, and 3-8 times for TOC compared with the Soyang watershed (control) during study period. The reason was that NPS pollutants from upper Gpeun and Sangri bridge subwatersheds, which are widely spraying with livestock liquid manure, were stack at this subwaterehd because of regulating gate in non-rainy seasons. A number of agricultural watersheds in Saemangeum watershed are affected by regulating gate and vigorous livestock activities so that substantial management schemes under controling regulating gate are needed for minimizing livestock related NPS.

Assessing Impact of Non-Point Source Pollution by Management Alternatives on Arable Land using AGNPS Model (AGNPS 모형을 이용한 농경지 관리대안에 따른 비점오염 저감효과 분석)

  • Lee, Eun-Jeong;Kim, Hak-Kwan;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1008-1013
    • /
    • 2007
  • The objectives of the paper were to identify appropriate best management practices (BMPs) for reducing nonpoint source (NPS) pollutant loadings and to simulate the effects of the application of the several BMP scenarios on the study watershed using Agricultural Nonpoint Source (AGNPS) model. AGNPS model was calibrated and validated for runoff, sediment yield, and nutrient components using the observed hydrologic and water quality data. The simulated runoff, sediment, and nutrient components were well agreed with observed data. The validated AGNPS was applied to estimate the NPS pollution removal efficiency for BMP scenarios which were selected considering the pollutant characteristics of the study watershed.

  • PDF

Comparison of NPS Pollution Characteristics between Snowmelt and Rainfall Runoff from a Highland Agricultural Watershed (고랭지 밭 유역에서 융설과 강우유출로 발생하는 비점오염원의 특성 비교)

  • Choi, Yong-Hun;Won, Chul-Hee;Park, Woon-Ji;Shin, Min-Hwan;Shin, Jae-Young;Lee, Su-In;Choi, Joong-Dae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.523-530
    • /
    • 2012
  • Runoff, NPS pollution load and flow-weighted mean concentration (FWMC) occurred by snowmelt and rainfall runoff were compared by a variance analysis. Snowmelt runoff ranged between 1,449 and $19,921m^3$. The peak snowmelt runoff was similar to the runoff that occurred by about 40mm/day rainfall. And average snowmelt runoff was not significantly different from the runoff that occurred by 25.5 mm/day rainfall. Average values of SS loads and FWMCs were 5,438 kg/day and 954.9 mg/L, respectively. SS loads and FWMCs were in the similar range with those that occurred by 39.0 mm/day and 53.0 mm/day rainfall, respectively. Daily SS and COD loads and FWMCs occurred by snowmelt and rainfall were analyzed not to be significantly different. Overall assessment led that the NPS pollution loads by snowmelt runoff had a similar characteristics with the loads by about 40 mm/day rainfall runoff. It was recommended that the agricultural fields in snowy region needs to managed not only for rainfall runoff but also snowmelt runoff for an effective water quality management.

Evaluations of NPS Reduction using the Rice Straw Mats and Soil Amendments from Steep Sloped Field (볏짚거적과 토양개량제를 활용한 경사지 밭의 비점오염원 저감평가)

  • Won, Chul-Hee;Shin, Min-Hwan;Choi, Yong-Hun;Shin, Jae-Young;Park, Woon-Ji;Lee, Su-In;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.29-36
    • /
    • 2013
  • The objective of the research was to describe the effect of straw mat cover and soil amendments on the reduction of runoff and non-point source load from steep sloped highland agricultural fields. Four $5{\times}30$ m plots on sandy loam soil with 28 % slope were prepared. Experimental treatments were bare (control), rice straw mat cover (3,000 kg/ha) (S), PAM (5 kg/ha)+Gypsum (1 ton/ha) (PG) and rice straw mat cover+PAM+Gypsum (SPG). A variety of lettuce was cultivated and runoff was monitored during a growing season in 2011. Natural monitoring was conducted to three times. Runoff rate of S, PG and SPG plots were significantly lower than those of control plot. Especially, the runoff rate is zero in SPG plot at a first rainfall events. The reduction rate of runoff from the S, PG and SPG plots was 30.8 %, 29.0 % and 81.8 % compared to control plots, respectively. The reduction rate of NPS pollution load of S, PG and SPG was ranged of 50~90 %, 30~70 % and 90~100 %, respectively. Yield of lettuce from S, PG and SPG plots was respectively 400 (567 kg/ha), 320 (453 kg/ha) and 760 (1,067 kg/ha) that of compared to control plots greater than that from control plots (140 kg/ha). We speculated that the experimental treated plots could hold more nutrients and moisture than the control and helped the crop grow healthier. When analyzing the above results, in terms of reduction of runoff and NPS pollution load and crop yields, SPG experimental treatment had the best effect. It was concluded that the use of rice straw mats cover and soil amendments on soil surface could not only reduce the NPS pollution loads in receiving waters but also help increase the crop yield.

Application Evaluation of Best Management Practices for Agricultural Non-Point Source Pollution using Delphi Survey Method (전문가 델파이 방법을 이용한 농업 비점오염 저감 기술의 현장 적용성 조사)

  • Kim, Min-Kyeong;Jung, Goo-Bok;Kim, Min-Young;Kim, Myung-Hyun;Cho, Kwang-Jin;Choi, Soon-Kun;Hong, Seong-Chang;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.144-147
    • /
    • 2014
  • BACKGROUND: It is essential to prioritize the exact and clear understanding of agricultural nonpoint source pollution (NPS) controls. The realistic policies and systems should also be developed based on this understanding. Therefore, this study aimed to present agricultural Best Management Practices (BMPs) applicable for the fields based on the Delphi survey result. METHODS AND RESULTS: This study deduced the evaluation items to assess each BMP for agricultural NPS control and conducted the surveying using the Delphi method based on agricultural BMP experts. In addition, its on-the-spot application were evaluated. Considering its importance, technical, social and economic proprieties showed that political support was ranked first and followed by cost investment, labor investment, reduction effect and resident participation. The survey findings by agricultural BMP experts showed the good performance of on-the-spot application can be achieved from fertilization by soil testing, residue and green manure application and contour plowing which are applicable within a field. Agricultural BMPs, highly applicable for the fields, were the countermeasures that farmers who are the principal bodies of agricultural NPS control could be participated directly. CONCLUSION: The active participation of farmers is essential for effective control of agricultural NPS. It is necessary to establish various incentive systems.