• Title/Summary/Keyword: NPS pollutant

Search Result 96, Processing Time 0.023 seconds

GIS based Non-Point Source Pollution Assessment

  • Sadeghi-Niaraki, Abolghasem;Kim, Kye-Hyun;Lee, Chol-Young
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.437-440
    • /
    • 2008
  • In recent years, pollution load calculation has become a topic for research that resulted in the development of numerous GIS modeling methods. The existing pollution method for nonpoint source (NPS) can not be indentified and calculated the amount of the pollution precisely. This research shows that the association of typical pollutant concentrations with land uses in a watershed can provide a reasonably accurate characterization of nonpoint source pollution in the watershed using Expected Mean Concentrations (EMC). The GIS based pollution assessment method is performed for three pollutant constituents: BOD, TN, and TP. First, the runoff grid by means of the precipitation grid and runoff coefficient is estimated. Then, the NPS pollution loads are calculated by grid based method. Finally, the final outputs are evaluated by statistical technique. The results illustrate the merits of the approach. This model verified that GIS based method of estimating spatially distributed NPS pollution loads can lead to more accurate representation of the real world.

  • PDF

Quantitative Estimation of Pollution Loading from Hwaseong Watershed using BASINS/HSPF (BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가)

  • Jung, Kwang-Wook;Yoon, Chun-G.;Jang, Jae-Ho;Kim, Hyung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.61-74
    • /
    • 2007
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.

Grid Based Nonpoint Source Pollution Load Modelling

  • Niaraki, Abolghasem Sadeghi;Park, Jae-Min;Kim, Kye-Hyun;Lee, Chul-Yong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.246-251
    • /
    • 2007
  • The purpose of this study is to develop a grid based model for calculating the critical nonpoint source (NPS) pollution load (BOD, TN, TP) in Nak-dong area in South Korea. In the last two decades, NPS pollution has become a topic for research that resulted in the development of numerous modeling techniques. Watershed researchers need to be able to emphasis on the characterization of water quality, including NPS pollution loads estimates. Geographic Information System (GIS) has been designed for the assessment of NPS pollution in a watershed. It uses different data such as DEM, precipitation, stream network, discharge, and land use data sets and utilizes a grid representation of a watershed for the approximation of average annual pollution loads and concentrations. The difficulty in traditional NPS modeling is the problem of identifying sources and quantifying the loads. This research is intended to investigate the correlation of NPS pollution concentrations with land uses in a watershed by calculating Expected Mean Concentrations (EMC). This work was accomplished using a grid based modelling technique that encompasses three stages. The first step includes estimating runoff grid by means of the precipitation grid and runoff coefficient. The second step is deriving the gird based model for calculating NPS pollution loads. The last step is validating the gird based model with traditional pollution loads calculation by applying statistical t-test method. The results on real data, illustrate the merits of the grid based modelling approach. Therefore, this model investigates a method of estimating and simulating point loads along with the spatially distributed NPS pollution loads. The pollutant concentration from local runoff is supposed to be directly related to land use in the region and is not considered to vary from event to event or within areas of similar land uses. By consideration of this point, it is anticipated that a single mean estimated pollutant concentration is assigned to all land uses rather than taking into account unique concentrations for different soil types, crops, and so on.

  • PDF

ILLUDAS-NPS Model for Runoff and Water Quality Analysis in Urban Drainage (도시유역의 유출·수질해석을 위한 ILLUDAS-NPS 모형)

  • Kim, Tae-Hwa;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.791-800
    • /
    • 2005
  • An ILLUDAS-NPS model was developed which is able to compute pollutant loadings and the concentrations of water quality constituents. This model is based on the existing ILLUDAS model, and added for use in the water quality analysis process during dry and rainy periods. For dry period, the specifications of coefficients for discharge and water quality were used. During rainfall, we used the daily pollutant accumulation method and the washoff equation for computing water quality each time. According to the results of verification, the ILLUDAS-NPS model provides generally similar outputs with the measured data on total loadings, peak concentration and time of peak concentration for three rainfall events in the Hong-je Basin. In comparison with the SWMM and STORM models, it was shown that there is little difference between ILLUDAS-NPS and SWMM.

Evaluation of Runoff and Pollutant Loads using L-THIA 2012 Runoff and Pollutant Auto-calibration Module and Ranking of Pollutant Loads Potential (L-THIA 2012 유출 및 수질 자동 보정 모듈을 이용한 유출/비점부하량 산정 및 비점오염 부하량 포텐셜 등급화)

  • Jang, Chunhwa;Kum, Donghyuk;Ha, Junsoo;Kim, Kyoung-Soon;Kang, Dong Han;Kim, Keuk-Tai;Shin, Dong Suk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Urbanization from agricultural/forest areas has been causing increased runoff and pollutant loads from it. Thus, numerous models have been developed to estimate NPS loading from urban area and Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to evaluate effects of landuse changes on runoff and pollutant loads. However, the L-THIA model could not consider rainfall intensity in runoff evaluation. Therefore, the L-THIA model, capable of simulating runoff using 10-minute rainfall data, was applied to the study areas for evaluation of estimated runoff and NPS. The estimated Nash-Sutcliffe coefficient (NSE) values were over 0.6 for runoff, BOD, TN, and TP for most sites and watershed. The calibrated model was further extended to other counties for pollutant load potential evaluation. Pollutant load potential maps were developed and target areas were identified. As shown in this study, the L-THIA 2012 can be used for evaluation runoff and pollutant loads with limited data sets and its estimation could be used in identifying pollutant load hot spot areas for implementation of site-specific Best Management Practices.

Wash-off Characteristics of NPS Pollutants from Forest Landuse (산림지역의 비점오염물질 유출특성 및 EMC 산정)

  • Choi, Ji-Yeon;Lee, So-Young;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.129-134
    • /
    • 2009
  • As a result of improved wastewater treatment facilities, the point source pollution emitted from human and municipal wastes is greatly decreasing. Conversely, the non-point source (NPS) pollution emanated from city streets, rural homes, suburban development, animal feedlot, croplands, and forestry is rapidly increasing. Practically, the main concern of the government is to control NPS pollutants by means of establishing a long term plan in order to protect the aqua-ecosystem. Studies have been conducted to assess the intensity of NPS from various landuses. In Korea, the data on NPS pollutant loadings are limited to few and broadly categorized landuses unlike in USA wherein specific landuses are available. This research aims to characterize the wash-off characteristics of NPS pollutants from forest landuse. Two sites were monitored during 15 storm events from 04/2008 to 10/2008. Mean $BOD_5$ EMCs are 1.13 mg/L and 0.91 mg/L for the two sites, respectively. The results of this research will be a helpful contribution for the assessment of total NPS pollutant loadings.

Basic Monitoring Concept for Revised Unit Load on NPS (비점오염원 원단위 개정을 위한 조사연구 방향)

  • Shin, Dongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.429-433
    • /
    • 2007
  • Many researchers have made a study of NPS unit-loads and the scientific evaluation method which need for formulating and enforcing a Total Maximum Daily Load (TMDL) management system and modifying a pollutant discharge loadings function. Some showed the event mean concentration (EMC) on single land-use. For the most parts, as the results showed on multiple land-uses, those cannot be used for NPS unit-loads calculation. NPS runoff shows various phenomena depending on rainfall monitoring data, therefore sampling methods and frequency for NPS monitoring must be different from the general monitoring for water quality trend assessment.

Characteristics of NPS Pollutants and Treatment of Stormwater Runoff in Paved Area during a Storm (강우시 포장지역의 비점오염물질 유출 및 저감특성)

  • Son, Hyun-Geun;Lee, So-Young;Maniquiz, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • The increase of pollutant loadings from nonpoint sources affect the water quality of the major rivers in Korea. Consequently, the need for managing the nonpoint source (NPS) pollution becomes the main concern of the Korean Ministry of Environment (MOE). Recently, the policy was changed from pollutant concentration-restricting approach to the total maximum daily load (TMDL) approach to improve the water quality and protect the aquatic ecosystem. Part of the program is the construction of Best Management Practice (BMP) pilot facilities basically to control NPS. Most of the BMPs adopted were foreign technologies which could not be properly employed in the country due to some limitations such as climate, watershed characteristics, etc. In other words, to be able to apply the BMPs, research on its applicability is necessary. In this study, a three-year monitoring has been conducted to assess the treatment performance of the BMP installed in highway toll plaza and parking lot. The data gathered aid in the characterization of NPS pollutants in runoff and estimation of the pollutant removal efficiency of the BMP. The results will be used for the future implementation of BMP in different land uses as well as for the determination of optimum operation and maintenance.

  • PDF

Analysis of the Characteristics of NPS Runoff and Application of L-THIA model at Upper Daecheong Reservoir (대청호 상류 유역의 비점오염원 유출특성 분석 및 L-THIA 모형 적용성 평가)

  • Shin, Min-Hwan;Lee, Jae-An;Cheon, Se-Uk;Lee, Yeoul-Jae;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Generation and transportation of runoff and pollutant loads within watershed generated eutrophication at Daecheong reservoir. To improve water quality at Daecheong reservoir, the best management practices should be developed and applied at upper watersheds for water quality improvement at downstream areas. In this study, two small watersheds of upper Daecheong reservoir were selected. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. To apply the L-THIA ArcView GIS model was evaluated for direct runoff and water quality estimation at small watershed. And the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separating from total flow. As a result, the $R^2$ (Coefficient of determination) value and Nash-Sutcliffe coefficient value for direct runoff comparison at An-nae watershed were 0.81 and 0.71, respectively. And the $R^2$ value and Nash-Sutcliffe coefficient value at Wol-oe were 0.95 and 0.93. The $R^2$ value of BOD, TOC, T-N and T-P at An-nae watershed were BOD 0.94, TOC 0.81, T-N 0.94 and T-P 0.89. And the $R^2$ value of BOD, TOC, T-N and T-P at Wol-oe watershed were BOD 0.80, TOC 0.93, T-N 0.86 and T-P 0.65. The result that estimated pollutant loadings using the L-THIA ArcView GIS model reflected well the measured pollutant loadings except for T-P in Wol-oe watershed. With L-THIA ArcView GIS model, the direct runoff and non-point pollutant (NPS) loadings in the watershed could be analyzed through simple input data such as daily rainfall, land uses, and hydrologic soil group.

Analysis of Reduction of NPS Pollution loads using the small sediment trap at field (소규모 침사구를 이용한 밭의 비점오염원 저감 효과 분석)

  • Shin, Min-Hwan;Lim, Kyoung-Jae;Jang, Jeong-Ryeol;Choi, Yong-Hun;Park, Woon-Ji;Won, Chul-Hee;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.27-35
    • /
    • 2012
  • Various Best Management Practices (BMPs) have been suggested to reduce Nonpoint source pollutant loads from agricultural fields. However, very little research regarding water quality improvement with sediment trap has been performed in Korea. Thus, effects of sediment trap were investigated in this study. Three sediment traps were installed at the edge of six plots and flow and water quality of inflow and outflow were monitored and analyzed. It was found that approximately 64.1 % of flow reduction was observed. In addition, pollutant concentration of outflow was reduced by 39.0 % for $BOD_5$. For SS, $COD_{Mn}$, DOC, T-N, T-P, approximately 62.1 %, 43.4 %, 43.5 %, 40.0 %, and 41.2 % reduction were observed, respectively. Over 80 % and 90 % of pollutant loads were reduced from sediment trap #2 and #3 because of less outflow from plots covered with rice straw/straw mat. In case of intensive rainfall events occurred from July 26~29, 2011, over 60 % of pollutant and 88.9 % of sediment reduction were observed from sediment trap #3. As shown in this study, small sediment traps could play important roles in reducing pollutant loads from agricultural fields. If proper management practices, such as rice straw/straw mat, are used to protect surface from rainfall impacts and rill formation, much pollutant reduction could be expected.