• Title/Summary/Keyword: NPC1 mutation

Search Result 3, Processing Time 0.018 seconds

Molecular diagnosis of Niemann-Pick type C presenting with neonatal cholestasis and hepatosplenomegaly (지속되는 신생아 담즙 정체증과 간비비대를 주소로 내원하여 유전자분석으로 확진된 C형 Niemann-Pick병)

  • Jeong, Min-Hee;Ko, Jung-Min;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.4 no.2
    • /
    • pp.200-203
    • /
    • 2007
  • Niemann-Pick type C is an inborn error of metabolism that affects lipid degradation and storage, which is characterized by hepatosplenomegaly and progressive neurological symptoms. A 7-month-old girl with jaundice was presented cholestasis and hepatosplenomegaly. Laboratory study showed elevated acid phosphatase, angiotensin converting enzyme and mild decrease of cholesterol. Characteristic foamy cell and sea-blue histiocytes in bone marrow biopsy consistent with Niemann-Pick disease. Niemann-Pick type C was suspected by past medical history and findings of physical examination. Therefore, molecular analysis was performed and found mutations of NPC1 gene. We report the first Korean case of type C Niemann-Pick disease confirmed by mutation analysis.

  • PDF

A Case of Childhood-Onset Niemann Pick Type C Disease (소아기에 발현한 C형 Niemann Pick 병 1례)

  • Jung, Jiwon;Seo, Go Hun;Oh, Arum;Jin, Hee Kyung;Bae, Jae-Sung;Kim, Gu-Hwan;Yoo, Han-Wook;Lee, Beom Hee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.1
    • /
    • pp.30-34
    • /
    • 2018
  • Niemann Pick type C disease (NPC) is an inherited progressive neurodegenerative disorder, due to defects of intracellular lipid trafficking and storage. Hepatosplenomegaly may prevail, while progressive neurodegenerative symptoms such as cerebellar involvement, dystonia, vertical supranuclear ophthalmoplegia, cataplexy, and eventually seizures starting at juvenile or late infantile period may accompany after normal early development. Here we describe a 3-year-old Korean boy with NPC who presented with splenomegaly at age 3. Liver biopsy showed characteristic foamy cell stained by periodic acid-schiff, and molecular analysis for NPC1 identified the compound heterozygous mutations, novel mutation of c.1631G>A (p.Trp544Ter) and c.2662C>T (p. Pro888Ser) as a known mutation. Filipin was strongly stained with unesterified cellular cholesterol in the patient's skin fibroblasts. The patient has received migulstat since age 3 years and his long-term outcome is needed to be observed.

  • PDF

Induced neural stem cells from human patient-derived fibroblasts attenuate neurodegeneration in Niemann-Pick type C mice

  • Hong, Saetbyul;Lee, Seung-Eun;Kang, Insung;Yang, Jehoon;Kim, Hunnyun;Kim, Jeyun;Kang, Kyung-Sun
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.7.1-7.13
    • /
    • 2021
  • Background: Niemann-Pick disease type C (NPC) is caused by the mutation of NPC genes, which leads to the abnormal accumulation of unesterified cholesterol and glycolipids in lysosomes. This autosomal recessive disease is characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. Recently, the application of induced neural stem cells (iNSCs), converted from fibroblasts using specific transcription factors, to repair degenerated lesions has been considered a novel therapy. Objectives: The therapeutic effects on NPC by human iNSCs generated by our research group have not yet been studied in vivo; in this study, we investigate those effects. Methods: We used an NPC mouse model to efficiently evaluate the therapeutic effect of iNSCs, because neurodegeneration progress is rapid in NPC. In addition, application of human iNSCs from NPC patient-derived fibroblasts in an NPC model in vivo can give insight into the clinical usefulness of iNSC treatment. The iNSCs, generated from NPC patientderived fibroblasts using the SOX2 and HMGA2 reprogramming factors, were transplanted by intracerebral injection into NPC mice. Results: Transplantation of iNSCs showed positive results in survival and body weight change in vivo. Additionally, iNSC-treated mice showed improved learning and memory in behavior test results. Furthermore, through magnetic resonance imaging and histopathological assessments, we observed delayed neurodegeneration in NPC mouse brains. Conclusions: iNSCs converted from patient-derived fibroblasts can become another choice of treatment for neurodegenerative diseases such as NPC.