• Title/Summary/Keyword: NP Hard

Search Result 425, Processing Time 0.03 seconds

Efficient task allocation algorithms for reducing processors on real-time multiprocessor system (실시간 다중프로세서 환경에서 프로세서 수의 감소를 위한 효율적인 타스크 배치방식)

  • 신명호;이정태;박승규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2801-2809
    • /
    • 1996
  • Scheduling problems in real-time systems are known to be NP-hard. the heuristic approaches aregenerally aplied to solve a certain class of systems. One of such cases is to allocate periodic tasks to multiprocessors while the moethod assures the requirement of the deadine constraints of real-time systems. The study on the allocation of periodic taks includes RMNF, RMFF, FFDUF and Next-Fit-M algorithms, which make a set of task grups first and then allocate to processors. This papre proposes the various algorithms which are based on the Next-Fit-M. To analyze the four proposed methods, simulation was carried on, in which the sample tasks are randomly generated with the various time intervals. The proposed algorithms reduce the number of processors compared with the conventional methods.

  • PDF

A Study on the G-Node and Disconnected Edges to Improve the Global and Local Locating Heuristic for GOSST Problem (GOSST 문제에 대한 전역적 배치와 지역적 배치 휴리스틱의 개선을 위한 G-Node와 단절에 관한 연구)

  • Kim, In-Bum;Kim, Chae-Kak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9B
    • /
    • pp.569-576
    • /
    • 2007
  • This paper is on the enhancement of our heuristics for GOSST problem that could apply to the design of communication networks offering graduated services. This problem hewn as one of NP-Hard problems finds a network topology meeting the G-Condition with minimum construction cost. In our prior research, we proposed two heuristics. We suggest methods of selecting G-Node and disconnections for Global or Local locating heuristic in this research. The ameliorated Local locating heuristic retrenches 17% more network construction cost saving ratio and the reformed Global locating heuristic does 14% more than our primitives.

Some Special Cases of a Continuous Time-Cost Tradeoff Problem with Multiple Milestones under a Chain Precedence Graph

  • Choi, Byung-Cheon;Chung, Jibok
    • Management Science and Financial Engineering
    • /
    • v.22 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • We consider a time-cost tradeoff problem with multiple milestones under a chain precedence graph. In the problem, some penalty occurs unless a milestone is completed before its appointed date. This can be avoided through compressing the processing time of the jobs with additional costs. We describe the compression cost as the convex or the concave function. The objective is to minimize the sum of the total penalty cost and the total compression cost. It has been known that the problems with the concave and the convex cost functions for the compression are NP-hard and polynomially solvable, respectively. Thus, we consider the special cases such that the cost functions or maximal compression amounts of each job are identical. When the cost functions are convex, we show that the problem with the identical costs functions can be solved in strongly polynomial time. When the cost functions are concave, we show that the problem remains NP-hard even if the cost functions are identical, and develop the strongly polynomial approach for the case with the identical maximal compression amounts.

New Population initialization and sequential transformation methods of Genetic Algorithms for solving optimal TSP problem (최적의 TSP문제 해결을 위한 유전자 알고리즘의 새로운 집단 초기화 및 순차변환 기법)

  • Kang, Rae-Goo;Lim, Hee-Kyoung;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.622-627
    • /
    • 2006
  • TSP(Traveling Salesman Problem) is a problem finding out the shortest distance out of many courses where given cities of the number of N, one starts a certain city and turns back to a starting city, visiting every city only once. As the number of cities having visited increases, the calculation rate increases geometrically. This problem makes TSP classified in NP-Hard Problem and genetic algorithm is used representatively. To obtain a better result in TSP, various operators have been developed and studied. This paper suggests new method of population initialization and of sequential transformation, and then proves the improvement of capability by comparing them with existing methods.

Performance comparison of Tabu search and genetic algorithm for cell planning of 5G cellular network (5G 이동통신 셀 설계를 위한 타부 탐색과 유전 알고리즘의 성능)

  • Kwon, Ohyun;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.65-73
    • /
    • 2017
  • The fifth generation(5G) of wireless networks will connect not only smart phone but also unimaginable things. Therefore, 5G cellular network is facing the soaring traffic demand of numerous user devices. To solve this problem, a huge amount of 5G base stations will need to be installed. The base station positioning problem is an NP-hard problem that does not know how long it will take to solve the problem. Because, it can not find an answer other than to check the number of all cases. In this paper, to solve the NP hard problem, we compare the tabu search and the genetic algorithm using real maps for optimal cell planning. We also perform Monte Carlo simulations to study the performance of the Tabu search and Genetic algorithm for 5G cell planning. As a results, Tabu search required 2.95 times less computation time than Genetic algorithm and showed accuracy difference of 2dBm.

A Study on the bounding method for computing the reliability of communication networks (통신망의 신뢰도 계정을 위한 근사방법에 관한 연구)

  • 김영헌;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.6
    • /
    • pp.595-603
    • /
    • 1992
  • It has been establisued that the reliability of communication networks is NP hard problem owing to computationally and complexity as the number of componeuts is Increased in large networks. This paper proposed an algorithm for determining upper and lower bounds In the reliability of source-to-terminal in communication networks to solve this problem. The evaluation method follows the next procedures. First, minimal pathset and minimal cut set are serched. Second, it is sorted that the number of components is the same events and the reliability bounds Is evaluated by the section function to extract common variable. The performance of proposed algorithm is also estimate(1 as compared to the reliability of Esary-Proschan, Shogan and Copal.

  • PDF

Polynomial Time Algorithm for Multi-Beam SS/TDMA Satellite Communications Scheduling Problem with Frequency-Hopping Ground Stations

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.33-40
    • /
    • 2015
  • The time slot assignment problem (TSAP) or Satellite Communications scheduling problem (SCSP) for a satellite performs $n{\times}n$ ground station data traffic switching has been known NP-hard problem. This paper suggests $O(n^2)$ time complexity algorithm for TSAP of a satellite that performs $n^2{\times}n^2$ ground station data traffic switching. This problem is more difficult than $n{\times}n$ TSAP as NP-hard problem. Firstly, we compute the average traffic for n-transponder's basic coverage zone and applies ground station exchange method that swap the ground stations until all of the transponders have a average value as possible. Nextly, we transform the D matrix to $D_{LB}$ traffic matrix that sum of rows and columns all of transponders have LB. Finally, we select the maximum traffic of row and column in $D_{LB}$, then decide the duration of kth switch mode to minimum traffic from selected values. The proposed algorithm can be get the optimal solution for experimental data.

A Study on Optimal Scheduling with Directed Acyclic Graphs Task onto Multiprocessors (다중프로세서에서 비순환 타스크 그래프의 최적 스케쥴링에 관한 연구)

  • 조민환
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.40-46
    • /
    • 1999
  • The task scheduling has an effect on system execution time in a precedence constrained task graph onto the multiprocessor system. This problem is known to be NP-hard. many people made an effort to obtain near optimal schedule. We compared modified critical path schedule with many other methods(CP, MH, DL Swapping) For testing this subject, we created randomly a directed acyclic task graph with many root nodes and terminal nodes simulation result convinced for us that the modified critical path algorithm is superior to the other scheduling algorithm.

  • PDF

Canonical Latin Square Algorithm for Round-Robin Home-and-Away Sports Leagues Scheduling (라운드-로빈 홈 앤드 어웨이 스포츠 리그 대진표 작성 정규형 라틴 방진 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.177-182
    • /
    • 2018
  • The home-and-way round-robin sports leagues scheduling problem with minimum brake is very hard to solve in polynomial time. This problem is NP-hard, the complexity status is not yet determined. This paper suggests round-robin sports leagues scheduling algorithm not computer-aided program but by hand with O(n) time complexity for arbitrary number of teams n with always same pattern. The algorithm makes a list of mathes using $n{\times}n$ canonical latin square for n=even teams. Then trying to get home(H) and away(A) with n-2 minimum number of brakes. Also, we get the n=odd scheduling with none brakes delete a team own maximum number of brakes from n=even scheduling.

A Genetic Algorithm for Clustering Nodes in Wireless Ad-hoc Networks (무선 애드 혹 네트워크에서 노드 클러스터링을 위한 유전 알고리즘)

  • Jang, Kil-woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.649-651
    • /
    • 2017
  • A clustering problem is one of the organizational problems to improve the network lifetime and scalability in wireless ad-hoc networks. This problem is a difficult combinatorial optimization problem associated with the design and operation of these networks. In this paper, we propose an efficient clustering algorithm to maximize the network lifetime and consider scalability in wireless ad-hoc networks. The clustering problem is known to be NP-hard. We thus solve the problem by using optimization approaches that are able to efficiently obtain high quality solutions within a reasonable time for a large size network. The proposed algorithm selects clusterheads and configures clusters by considering both nodes' power and the clustering cost. We evaluate this performance through some experiments in terms of nodes' transmission energy. Simulation results indicate that the proposed algorithm performs much better than the existing algorithms.

  • PDF