• Title/Summary/Keyword: NOx-free

Search Result 29, Processing Time 0.032 seconds

Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Suh, Jeong Kwon;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • Most of LNT catalysts use noble metals such as Pt for low temperature NOx oxidation but there is an economic weakness. For the purpose of overcoming this, this study is to develop DeNOx catalyst for LNT excluding PGM (platinum group metal) such as Pt, Pd, Rh, etc. To do so, Al/Co/Ni catalyst selected as a preliminary test is used to study fundamental property and NOx’s conversion according to calcined temperature. Ultimately, that is, Al/Co/Ni mixed metal oxide which does not use PGM is selected and physicochemical characterization is performed by way of XRD, EDS, SEM, BET and ramp test and NOx conversion is also analyzed. This study shows that all samples consist of mixed oxides of spinel structure of Co2AlO4 and NiAl2O4 and have enough pore volume and size for redox. But as a result of NH3-TPD test, it is desired that calcined temperature needs to be maintained at 700 ℃ or lower. Also only samples which are processed under 500 ℃ satisfied NO and NOx conversion simultaneously through ramp test. Based on this study’s results, optimum calcined temperature for Al/Co/Ni=1.0/2.5/0.3 mixed metal oxide catalyst is 500 ℃.

Efficiency Evaluation of Mobile Emission Reduction Countermeasures Using Data Envelopment Analysis Approach (자료포락분석(DEA) 기법을 활용한 도로이동오염원 저감대책의 효율성 분석)

  • Park, Kwan Hwee;Lee, Kyu Jin;Choi, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.93-105
    • /
    • 2014
  • This study evaluated the relative efficiency of mobile emission reduction countermeasures through a Data Envelopment Analysis (DEA) approach and determined the priority of countermeasures based on the efficiency. Ten countermeasures currently applied for reducing greenhouse gases and air pollution materials were selected to make a scenario for evaluation. The reduction volumes of four air pollution materials(CO, HC, NOX, PM) and three greenhouse gases($CO_2$, $CH_4$, $N_2O$) for the year 2027, which is the last target year, were calculated by utilizing both a travel demand forecasting model and variable composite emission factors with respect to future travel patterns. To estimate the relative effectiveness of reduction countermeasures, this study performed a super-efficiency analysis among the Data Envelopment Analysis models. It was found that expanding the participation in self car-free day program was the most superior reduction measurement with 1.879 efficiency points, followed by expansion of exclusive bus lanes and promotion of CNG hybrid bus diffusion. The results of this study do not represent the absolute data for prioritizing reduction countermeasures for mobile greenhouse gases and air pollution materials. However, in terms of presenting the direction for establishing reduction countermeasures, this study may contribute to policy selection for mobile emission reduction measures and the establishment of systematic mid- and long-term reduction measures.

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8) (동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향)

  • Park, Ho-Yong;Yoon, Sung-Hwan;Rho, Beom-Seok;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.780-787
    • /
    • 2019
  • As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

A study on the flow characteristics in a MILD combustion waste incinerator with the change of flue gas recirculation inlet location (MILD 연소 폐기물 소각로에서 배기가스 재순환 흡입구 위치에 따른 유동 특성 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Jung, Eung Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2014
  • A MILD(Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow position of hot exhaust gas to the combustion furnace. A numerical analysis was accomplished to elucidate the flow characteristics in the MILD combustion incinerator for several cases with or without exhaust gas recirculation. It could be seen from the result of the present numerical study that the flow recirculation could be observed in the upper region over the vertical dividing wall for the case without exhaust gas recirculation. The optimal position of exhaust gas recirculation position was derived by the comparison of %RMS of x directional velocity for the cases with exhaust gas recirculation. The case with the exhaust gas recirculation position at the upper right of free board was the most effective with the smallest value of 57.4% RMS.

The Characteristics of Exhaust Gas Emissions with GTL Fuel (GTL연료의 배출가스 특성 연구)

  • Gwoak, Soon-Chul;Seo, Chung-Yul;Kang, Dae-Il;Park, Jung-Min;Yim, Yoon-Sung;Hwan, Chun-Sik;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Young-Jae;Pyo, Young-Dug;Jung, Choong-Sub;Jang, Eun-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.17-22
    • /
    • 2007
  • GTL(Gas-to-Liquids) fuel technology was converted from the natural gas, coal and biomass into the diesel or kerosene by Fisher-Tropsch synthesis. GTL fuel have very good merits on high cetane number, low density, free sulfur, lower aromatics contents and no poly-aromatic hydrocarbons as well as the autoignition characteristics. These physical properties make it valuable as a diesel fuel with lower emissions than the conventional diesel fuel. Furthermore, GTL fuel can be use not to the engine any modification. Therefore, to evaluate emissions of GTL fuel, the tested diesel vehicles were fueled on blends of GTL fuel/ultra low sulfur diesel fuel(ULSD). And then, we found out that GTL fuel reduced regulated emissions(CO, NOx, HC, PM) compare with conventional diesel fuel.

Development of a 30 kW Hydrogen-Fueled Micromix Combustor for Research (연구용 30 kW 수소 전소 마이크로믹스 연소기 개발)

  • Seojun Ock;Minsu Kim;Suhyeon Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.72-81
    • /
    • 2023
  • Hydrogen-fueled gas turbines are a promising technology that can resolve the carbon dioxide emission issue as future aviation propulsion engines and carbon-free power generations. To achieve high efficiency and stability of gas turbines using 100% hydrogen as fuel, an innovative design of combustor systems is necessary to consider the characteristics of hydrogen, which are different from those of conventional hydrocarbon fuels. Micromix is a combustor design method, which aims to terminate the reaction quickly by intense mixing of fuel and air, consequently reducing NOx and increasing the stability. In this paper, we examine the principles and design process of micromix combustors as a pure-hydrogen combustion technology, and we introduce a design of a 30 kW micromix hydrogen combustor for research.

Effect of Vanadium Oxide Loading on SCR Activity and $SO_2$ Resistance over $TiO_2$-Supported $V_2O_5/TiO_2$ Commercial De-NOx Catalysts (상용 $V_2O_5/TiO_2$ 촉매의 바나듐 함량이 SCR 반응성과 $SO_2$ 내구성에 미치는 영향)

  • Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.485-489
    • /
    • 2012
  • We investigated vanadium (V) loading effects on selective catalytic reduction (SCR) activity and $SO_2$ resistance using commercial SCR catalysts applied on a power plant and incinerator with different amounts of V loading. These catalysts were characterized using XRD, Raman, ICP, BET analysis and found to contain $TiO_2$ (anatase) supported $V_2O_5$ added $WO_3$ and $SiO_2$. The SCR activity of the catalysts increased by increasing either the $V_2O_5$ or the $WO_3$ loading amounts; the SCR activity of the catalysts added $WO_3$ is higher than that of $WO_3$-free catalysts. As the V loading amount in the catalyst increased, the $SO_2$ durability decreased. The $V_2O_5$ supported $TiO_2$ catalyst added $WO_3$ and $SiO_2$ inhibits the deactivation process by $SO_2$. The $SO_2$ resistance of catalysts added $SiO_2$ is higher than that of catalysts added $WO_3$.

Lung cancer, chronic obstructive pulmonary disease and air pollution (대기오염에 의한 폐암 및 만성폐색성호흡기질환 -개인 흡연력을 보정한 만성건강영향평가-)

  • Sung, Joo-Hon;Cho, Soo-Hun;Kang, Dae-Hee;Yoo, Keun-Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.3 s.58
    • /
    • pp.585-598
    • /
    • 1997
  • Background : Although there are growing concerns about the adverse health effect of air pollution, not much evidence on health effect of current air pollution level had been accumulated yet in Korea. This study was designed to evaluate the chronic health effect of ai. pollution using Korean Medical Insurance Corporation (KMIC) data and air quality data. Medical insurance data in Korea have some drawback in accuracy, but they do have some strength especially in their national coverage, in having unified ID system and individual information which enables various data linkage and chronic health effect study. Method : This study utilized the data of Korean Environmental Surveillance System Study (Surveillance Study), which consist of asthma, acute bronchitis, chronic obstructive pulmonary diseases (COPD), cardiovascular diseases (congestive heart failure and ischemic heart disease), all cancers, accidents and congenital anomaly, i. e., mainly potential environmental diseases. We reconstructed a nested case-control study wit5h Surveillance Study data and air pollution data in Korea. Among 1,037,210 insured who completed? questionnaire and physical examination in 1992, disease free (for chronic respiratory disease and cancer) persons, between the age of 35-64 with smoking status information were selected to reconstruct cohort of 564,991 persons. The cohort was followed-up to 1995 (1992-5) and the subjects who had the diseases in Surveillance Study were selected. Finally, the patients, with address information and available air pollution data, left to be 'final subjects' Cases were defined to all lung cancer cases (424) and COPD admission cases (89), while control groups are determined to all other patients than two case groups among 'final subjects'. That is, cases are putative chronic environmental diseases, while controls are mainly acute environmental diseases. for exposure, Air quality data in 73 monitoring sites between 1991 - 1993 were analyzed to surrogate air pollution exposure level of located areas (58 areas). Five major air pollutants data, TSP, $O_3,\;SO_2$, CO, NOx was available and the area means were applied to the residents of the local area. 3-year arithmetic mean value, the counts of days violating both long-term and shot-term standards during the period were used as indices of exposure. Multiple logistic regression model was applied. All analyses were performed adjusting for current and past smoking history, age, gender. Results : Plain arithmetic means of pollutants level did not succeed in revealing any relation to the risk of lung cancer or COPD, while the cumulative counts of non-at-tainment days did. All pollutants indices failed to show significant positive findings with COPD excess. Lung cancer risks were significantly and consistently associated with the increase of $O_3$ and CO exceedance counts (to corrected error level -0.017) and less strongly and consistently with $SO_2$ and TSP. $SO_2$ and TSP showed weaker and less consistent relationship. $O_3$ and CO were estimated to increase the risks of lung cancer by 2.04 and 1.46 respectively, the maximal probable risks, derived from comparing more polluted area (95%) with cleaner area (5%). Conclusions : Although not decisive due to potential misclassication of exposure, these results wert drawn by relatively conservative interpretation, and could be used as an evidence of chronic health effect especially for lung cancer. $O_3$ might be a candidate for promoter of lung cancer, while CO should be considered as surrogated measure of motor vehicle emissions. The control selection in this study could have been less appropriate for COPD, and further evaluation with another setting might be necessary.

  • PDF