• 제목/요약/키워드: NOx reduction

검색결과 761건 처리시간 0.034초

DIESEL ENGINE NOx REDUCTION BY SNCR UNDER SIMULATED FLOW REACTOR CONDITIONS

  • Nam, Chang-Mo;Kwon, Gi-Hong;Mok, Young-Sun
    • Environmental Engineering Research
    • /
    • 제11권3호
    • /
    • pp.149-155
    • /
    • 2006
  • NOx reduction experiments were conducted by direct injection of urea into a diesel fueled, combustion-driven flow reactor which simulated a single engine cylinder ($966cm^3$). NOx reduction tests were carried out over a wide range of air/fuel ratios (A/F=20-40) using an initial NOx level of 530ppm, and for normalized stoichiometric ratios of reductant to NOx (NSR) of 1.5 to 4.0. The results show that effective NOx reduction with urea occurred over an injection temperature range of 1100 to 1350K. NOx reduction increased with increasing NSR values, and about a 40%-60% reduction of NOx was achieved with NSR=1.5-4.0. Most of the NOx reduction occurred within the cylinder and head section (residence time <40msec), since temperatures in the exhaust pipe were too low for additional NOx reduction. Relatively low NOx reduction is believed to be due to the existence of higher levels of CO and unburned hydrocarbons (UHC)inside the cylinder, and large temperature drops along the reactor. Injection of secondary combustible additives (diesel fuel/$C_2H_6$) into the exhaust pipe promoted further substantial NOx reduction (5%-30%) without shifting the temperature windows. Diesel fuel was found to enhance NOx reduction more than $C_2H_6$, and finally practical implications are further discussed.

Ni, Ru-ZSM-5를 첨가한 NSR 촉매의 NOx 정화 특성 (Characteristics of NOx Reduction on NSR(NOx Storage and Reduction) Catalyst Supported by Ni, Ru-ZSM-5 Additives)

  • 최병철;이춘희;정종우
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.105-111
    • /
    • 2007
  • In this study, we investigated the conversion performance of de-NOx catalyst for lean-burn natural gas engine. As a de-NOx catalyst, NOx storage reduction catalyst was composed of Pt, Pd and Rh with washcoat including Ba and Ni, Ru-ZSM-5. Ni, Ru-ZSM-5, which was regarded as a NOx direct decomposition catalyst, was made up of ion exchanged ZSM-5 by 5wt.% Ni or Ru. The performance of de-NOx catalyst was evaluated by NOx storage capacity and catalytic reduction in air/fuel, $\lambda=1.6$. The catalytic reaction was also observed when the added fuel was supplied to fuel rich atmosphere by fuel spike period of 5 seconds. The NOx conversion of the catalysts with Ni-ZSM-5 or Ru-ZSM-5 was mainly caused by the effect of NOx adsorption of Ba rather than the catalytic reduction of Ni, Ru-ZSM-5. Ni, Ru-ZSM-5 catalysts can not use for the NSR catalyst because they have quick process in thermal deactivation.

SNCR Application to Diesel Engine DeNOx under Combustion-driven Flow Reactor Conditions

  • Nam, Chang-Mo;Gibbs, Bernard M.
    • 한국환경과학회지
    • /
    • 제21권7호
    • /
    • pp.769-778
    • /
    • 2012
  • Diesel DeNOx experiments using the SNCR process were performed by directly injecting NH3 into a simulated engine cylinder (966 $cm^3$) for which a diesel fuelled combustion-driven flow reactor was designed by simulating diesel engine geometry, temperature profiles, aerodynamics and combustion products. A wide range of air/fuel mixtures (A/F=20~45) were combusted for oxidizing diesel flue gas conditions where an initial NOx levels were 250~900 ppm and molar ratios (${\beta}=NH_3/NOx$) ranged from 0.5~2.0 for NOx reduction tests. Effective NOx reduction occurred over a temperature range of 1100~1350 K at cylinder injections where about 34% NOx reduction was achieved with ${\beta}$=1.5 and cylinder cooling at optimum flow conditions. The effects of simulated engine cylinder and exhaust parts, initial NOx levels, molar ratios and engine speeds on NOx reduction potential are discussed following temperature gradients and diesel engine environments. A staged injection by $NH_3$ and diesel fuel additive is tested for further NOx reduction, and more discussed for practical implication.

서울지역 대형연소시설에서의 질소산화물 제거효율과 배출계수 산정 (Evaluation of NOx Reduction Efficiency and Emission Factor from Large Combustion Facilities in Seoul)

  • 신진호;오석률;김정영;전재식;신정식
    • 환경위생공학
    • /
    • 제18권2호
    • /
    • pp.27-33
    • /
    • 2003
  • This survey was performed to investigate the NOx emission factors at 3 Municipal Solid Waste Incinerators(MSWI) and 5 Power generation boilers in Seoul. The NOx concentrations were measured before and after control systems. The results were as follows. 1) The NOx reduction efficiencies of Selective Catalytic Reduction (SCR) using ammonia as reducing agent ranged from 53.7% to 89.9%. The NOx reduction efficiencies of SCR using methanol as reducing agent, Non- Selective Catalytic Reduction (NSCR) using ethanol as reducing agent and low-NOx burner were 20.8%, 29.1% and 24.7%, respectively. 2) The NOx emission factors at A-1, A-2 and A-3 facilities of MSWI were 0.786, 0.127 and 0.594 kg Nox/ton fuel, respectively. The factors of A-1 and A-3 facilities were higher than the average value of Korea. 3) The NOx emission factors at B-1, B-2, B-3, B-4 and B-5 facilities of Power generation boiler were 2.109, 0.726, 4.106, 8.378 and 5.168 kg Nox/ton fuel, respectively. The factors of B-4 and B-5 facilities were higher than the average value of Korea.

디젤기관의 NOx 저감방법 및 NOx 측정에 관한 연구 (A Study on the Method of NOx Reduction and NOx Measurement for the Diesel Engines)

  • 남정길;김준효;최주열
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.193-199
    • /
    • 2002
  • According to the NOx level requirement of annex Vl to IMO(International Maritime Organization) MARPOL 73/78, this regulation shall apply to each diesel engine with a power output of more than 130 ㎾ which is installed on a ship constructed and undergoes a major conversion on or after 1 January 2000. It is inevitable to adopt IMO standard for marine engines. Therefore, most of diesel engines which are being currently built should be tested and surveyed in accordance with the NOx technical code. In this study, various technics of NOx reduction methods were investigated for the diesel engines and the methods of NOx measuring were introduced by the new and simplified field detecting equipment. These results can be utilized for the basic design and developement of diesel engine for NOx reduction.

  • PDF

공기 다단공급식 미분탄 버너의 NOx 저감 특성 (NOx Reduction Characteristics of Air Staging Burner for Pulverized-coal Combustion)

  • 박주식;김성완;최상일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.153-160
    • /
    • 2001
  • The combustion test used DTF was performed to obtain the characteristics of NOx emission and reduction. In this test, major factor of NOx emission was a stoichiometric air ratio. At the onset of combustion to be rich oxygen, NOx was produced rapidly. Optimum condition for NOx reduction was formed under about AR:0.7 in the combustion test of Alaska coal. Investigations were undertaken with 200KW(th) test combustor. In combustion test, the major variables were coal feed ratio of center/outer, stoichiometric air ratio at the onset of combustion. The lowest NOx emission, 182ppm(6% O2 base), was achieved at about AR:0.6 of the first combustion stage with low NOx burner. Also, unburned carbon content of char collected in this combustion condition was about 1wt%.

  • PDF

파일럿 규모의 흐름반응기에서 유기 및 무기 첨가제가 질소산화물의 선택적 무촉매 환원반응에 미치는 영향 (Effects of Organic and Inorganic Additives on Selective Non Catalytic Reduction Reaction of NOx in a Pilot Scale Flow Reactor)

  • 박수엽;유경선;이중기;박영권
    • Korean Chemical Engineering Research
    • /
    • 제44권5호
    • /
    • pp.540-546
    • /
    • 2006
  • 파일럿 크기의 흐름반응기에서 유기와 무기 첨가제가 질소산화물의 선택적 무촉매 환원반응에 미치는 영향을 공정변수 변화에 따라 고찰하였다. 질소산화물 저감효율은 반응기의 체류시간과 초기 NOx 농도 증가에 따라 증가하였다. 요소용액에 의한 NOx 환원반응은 $850^{\circ}C$에서 시작되어 $970^{\circ}C$에서는 최대값을 나타내었으며, NSR = 2.0까지 증가 하였다. 유기첨가제로서 에탄올과 페놀의 첨가는 온도창을 저온 영역으로 이동시켰으며, 에탄올 구조내의 탄화수소에 의한 부반응으로 최대의 NOx 저감효율이 감소하였다. NaOH 첨가는 NaOH의 연쇄반응과 $N_2O$ 저감으로 인하여 온도창을 확대시키고, 최대 NOx 저감효율을 10% 정도 향상시켰다.

가스화 연료 연소시 단계적 연료주입 기술에 의한 질소산화물 저감 (Reduction of Nitrogen Oxide by Fuel Staged Technology on the Combustion of Gasification Fuel)

  • 채종성;조선희;전영남
    • 한국대기환경학회지
    • /
    • 제14권2호
    • /
    • pp.107-116
    • /
    • 1998
  • Coal gasification fuel has generally a lower calorific values than natural gas and also contains ammonia which is a main source of fuel NOx. Such a fuel is in need of the advanced technologies for the NOx reduction with higher combustion efficiency. Therefore fuel staged combustion was investigated for the fuel NOx control using a bench scale gas combustoi for the fuel NOx control. Parametric screening studies were performed with the variation of air ratio, retention length and reburning fuel. The NOx reduction efficiency was increased with an increase of total air ratio having optimum reburning air ratio differently, The Increased retention length of the reburning zone was preferable for NOx reduction. Hydrocarbonic reburning fuels like propane and butane were more effective for the NOx reduction efficiency than hydrogen fuel. The NOx concentration at exit was linearly increased according to the fuel-N the fuel.

  • PDF

V2O5 - TiO2 촉매 담지된 세라믹 폼 필터를 이용한 NOx 제거 특성 (Characteristics of NOx Reduction Using V2O5 - TiO2Catalyst Coated on Ceramic Foam Filters)

  • 한요섭;김현중;박재구
    • 한국대기환경학회지
    • /
    • 제20권6호
    • /
    • pp.773-781
    • /
    • 2004
  • Ceramic foams prepared from silica -clay were coated with TiO$_2$ and V$_2$O$_{5}$ catalysts for selective catalytic reduction of NOx with NH$_3$. The effects of V$_2$O$_{5}$ loading, reaction temperature, space velocity, and oxygen content on NOx reduction with NH$_3$ were mainly investigated. Also, the NOx reduction characteristics of V$_2$O$_{5}$ and V$_2$O$_{5}$ -TiO$_2$ filters were compared when sulfur dioxide exists. From the results, the optimal NOx reduction with the maximum reduction efficiency of 91 % could be performed under the condition with V$_2$O$_{5}$ loading 6.0 wt. %, reaction temperature 35$0^{\circ}C$, space velocity 6,000h$^{-1}$ , and oxygen content 5%. And, the V$_2$O$_{5}$ -TiO$_2$ filters have shown higher NOx reduction efficiency and acid resistance against sulfur dioxide than the V$_2$O$_{5}$ filters.

소형 디젤엔진의 NOx 저감을 위한 Urea-SCR 시스템에 관한 연구 (A Study on the Urea-SCR System for NOx Reduction of a light-Duty Diesel Engine)

  • 남정길
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.57-63
    • /
    • 2005
  • The effects of an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated with the parameters such as urea-SCR(Selective Catalytic Reduction) and EGR system. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection quantity can be controlled with the urea syringe pump, precisely. The effects of NOx reduction for the urea-SCR system were investigated with and without ECR engine, respectively. It was concluded that the SUF(Stoichiometric Urea Flow) is calculated and the NOx results are visualized with engine speed and load. Furthermore, the NOx map is made from this experimental results. It was suggested, therefore, that NOx reduction effects of the urea-SCR system without the EGR engine were better than that with the EGR engine except of low load and low speed.