• Title/Summary/Keyword: NOx quantity

Search Result 67, Processing Time 0.033 seconds

A Study on the Conversion Performance of Lean NOx Trap for a 4-stroke Diesel Engine (4기통 디젤엔진에서의 Lean NOx Trap 촉매 정화 특성에 관한 연구)

  • Han, Joon-Sup;Oh, Jung-Mo;Lee, Ki-Hyung;Lee, Jin-Ha
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.78-83
    • /
    • 2011
  • Diesel engine has many advantages such as high thermal efficiency, low fuel consumption and low emission of CO2. However, the diesel engine faced with strengthened emission regulation about NOx and PM. To suppress NOx emission, after-treatment systems such as Lean NOx Trap (LNT), Selective Catalytic Reduction (SCR) are considered as a more practical strategy. This paper investigated the performance of Lean NOx trap of the 4 stroke diesel engine which had a LNT catalyst. Characteristic of exhaust emission at NEDC mode was analyzed. From this result, the effect of nozzle attaching degree, injection quantity and gas flow change on NOx conversion performance was clarified.

NOx Conversion Characteristics of HC-LNT System according to Secondary Injection Conditions in a Diesel Engine (디젤엔진에서 2차 분사조건에 따른 HC-LNT 시스템의 NOx 변환 특성)

  • Park, Jin-Kyu;Oh, Jung-Mo;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.130-137
    • /
    • 2012
  • Automotive engines need strategies to satisfy with the emission regulations in terms of PM and NOx. HC-LNT (Hydrocarbon-Lean NOx Trap) with secondary injection system is considered as more practical technology in order to cope with emission regulations. The HC-LNT system, which is using diesel fuel itself as a reducing agent, absorbs NOx in lean exhaust gas condition and releases NOx in rich exhaust gas conditions. In this system, inappropriate amounts of reducing agent will slip through the LNT without the profits of conversion and cause additional emission problems. Therefore, the suitable amount of reducing agent should be supplied into the catalytic converter. In this research, engine emission test was conducted to optimize injection quantity at the various engine test conditions. Different exhaust layouts and catalyst shapes have been studied and extension unit which makes better uniformity of exhaust gas was used for HC-LNT system. From this results, the effect of secondary injection conditions on NOx conversion characteristics of HC-LNT was clarified.

Spray Characteristics of Injector Used for HC-DeNOx Catalyst System (HC-DeNOx 촉매용 인젝터의 분무 특성 연구)

  • Lee, Dong-Hoon;Jung, Hae-Young;Lee, Ki-Hyung;Lee, Jin-Ha;Yeo, Kwon-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.167-172
    • /
    • 2007
  • A new method that optimizes a control of hydrocarbon (HC) addition to diesel exhaust gas for HC type DeNOx catalyst system has been developed. These catalysts are called the HC-DeHOx catalyst in this paper. The system using HC-DeNOx catalyst requires a resonable quantity of hydrocarbons addition in the inlet gas of the catalyst, because the HC concentration in a diesel engine is so low that the HC is not sufficient for NOx conversion. It is expected that this study offers a robust data developing HC injection system.

Optimization of NOx Emission with Blends of Bio-diesel Oil and Diesel Fuel Using Design of Experiments (실험계획법에 의한 바이오 디젤 혼합유의 NOx 배출 최적화)

  • Lee, Sang-Deuk;Kim, Kyong-Hyon;Lee, Han-Seong;Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.149-155
    • /
    • 2013
  • Since bio-diesel oil has a merit that it satisfies both demand of substitution for fossil fuel and reduction in carbon dioxide emission, it is widely used in diesel engines by blending in gas oil in small quantity. It is needed to reduce in NOx emission in some way or others if blending ratio of bio-diesel oil is going to increase, because it is demerit that bio-diesel oil emits more NOx emission than gas oil. In this study, it was accomplished to optimize 3 factors what effect on NOx emission as blending ratio of bio-diesel oil, injection timing and common rail pressure with an introduction of a design of experiments, in order to minimize a number of tests. It was cleared that to introduce the design of experiments was very available in NOx optimization.

Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel (바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향)

  • Ryu, Kyunghyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.

A study on Property of Emission Gas by the Content Variation of Urea (UREA의 함량 변화에 따른 배출가스 특성분석)

  • Kang, Hyungkyu;Doe, Jinwoo;Hwang, Inha;Im, Jaeheuk;Ha, Jonghan;Na, Byungki
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.24-32
    • /
    • 2015
  • National and international regulations on the exhaust gases of diesel engines are being strengthened, and a study of the combutsion engine and the post-porcessing system are in progress as a variety of ways. There are many techniques for the removal of nitrogen oxide like HC-SCR, LNT, Urea-SCR. And the technical development on the Urea-SCR owing to high conversion efficiency and fuel economy characteristics has being processed. This study investigated the physical/chemical properties of urea according to the change of the urea content, and were analysed the characteristic of exhaust gas. According to the increase of urea content, the contests of biuret aldehyde, phosphate content was increased and the changes of emission quantity of carbon monoxide, hydrocarbons and particulate matter in the exhaust gas was very slight. The emission quantity of NOx was decreased in accordance with increasing the urea content and it was shown to be more than 80 % in the urea solution having more than 30 wt%.

Characteristic Analysis of a SCR System using a Metal Foam in Diesel Engines (디젤 엔진에서 금속 폼을 적용한 SCR 촉매의 특성 분석)

  • Kim, Yongrae;Choi, Kyonam
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.196-201
    • /
    • 2013
  • SCR(Selective Catalytic Reduction) is a major after-treatment solution to reduce NOx emission in recent diesel engines. In this study, a metal foam is applied as an alternative SCR substrate and tested in a commercial diesel engine to compared with a conventional ceramic SCR system. Basic engine test from ND-13 mode shows that a metal foam catalyst has lower NOx conversion efficiency than a ceramic catalyst especially over $350^{\circ}C$. A metal foam catalyst has characteristics of high exhaust gas pressure before a SCR catalyst and high heat transfer rate due to its material and structure. NOx conversion efficiency of a metal foam catalyst shows an increasing tendency along with the increase of exhaust gas temperature by $500^{\circ}C$. The effect of urea injection quantity variation is also remarkable only at high exhaust gas temperature.

A Study on the Engine Performance and Exhaust Emission with Intake Port Methanol Injection in a DI Diesel Engine (직분식 디젤기관의 메탄올 흡기분사에 의한 기관성능과 배기배출물에 관한 연구)

  • 김명수;라진홍;안수길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.249-256
    • /
    • 2000
  • In order to investigate the effectiveness of methanol, which has high latent heat of evaporation and oxygen contents, for DI diesel engine performance and exhaust emission, the methanol was injected at the suction port of DI diesel engine. The injector used for test was conventional gasoline engine injector and controlled the quantity of methanol per cycle by the power supply controller which designed specially for injector. The results shown that the maximum pressure point was delayed, the value of maximum pressure was decreased, and the concentrations of both NOx and Soot were decreased, as the methanol injection quantity increased, and also the thermal efficiency of engine injected methanol under the high load condition was similar to no methanol injection but under the medium load condition was decreased within the experimental conditions.

  • PDF

A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구)

  • 강병무;안현찬;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

Spray Behavior Characteristics of Injector Used for HC-DeNOx Catalyst System in the Transparent Exhaust Manifold (모사 배기관 내 HC-DeNOx 촉매용 인젝터의 분무 거동 특성)

  • Lee, Dong-Hoon;Oh, Jung-Mo;Jeong, Hae-Young;Lee, Ki-Hyung;Yeo, Kwon-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.54-60
    • /
    • 2007
  • A new method that optimizes a control of hydrocarbon (HC) addition to diesel exhaust gas for HC type DeNOx catalyst system has been developed. These catalysts are called as the HC-DeNOx catalyst in this paper. The system using HC-DeNOx catalyst requires a resonable quantity of hydrocarbons addition in the inlet gas of the catalyst, because the HC concentration in a diesel engine is so low that the HC is not sufficient for NOx conversion. Generally ambient temperature in the exhaust manifold is $250{\sim}350^{\circ}C$, so spray behavior in this case is different from that of any other condions. This research shows spray behavior of injected hydrocarbons in the transparent exhaust manifold.