• Title/Summary/Keyword: NOx distribution

Search Result 197, Processing Time 0.023 seconds

Experimental and computational analysis of behavior of three-way catalytic converter under axial and radial flow conditions

  • Taibani, Arif Zakaria;Kalamkar, Vilas
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.134-142
    • /
    • 2012
  • The competition to deliver ultra-low emitting vehicles at a reasonable cost is driving the automotive industry to invest significant manpower and test laboratory resources in the design optimization of increasingly complex exhaust after-treatment systems. Optimization can no longer be based on traditional approaches, which are intensive in hardware use and laboratory testing. The CFD is in high demand for the analysis and design in order to reduce developing cost and time consuming in experiments. This paper describes the development of a comprehensive practical model based on experiments for simulating the performance of automotive three-way catalytic converters, which are employed to reduce engine exhaust emissions. An experiment is conducted to measure species concentrations before and after catalytic converter for different loads on engine. The model simulates the emission system behavior by using an exhaust system heat conservation and catalyst chemical kinetic sub-model. CFD simulation is used to study the performance of automotive catalytic converter. The substrate is modeled as a porous media in FLUENT and the standard k-e model is used for turbulence. The flow pattern is changed from axial to radial by changing the substrate model inside the catalytic converter and the flow distribution and the conversion efficiency of CO, HC and NOx are achieved first, and the predictions are in good agreement with the experimental measurements. It is found that the conversion from axial to radial flow makes the catalytic converter more efficient. These studies help to understand better the performance of the catalytic converter in order to optimize the converter design.

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine (3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.

On-Road Testing and Calculation of Emission Factor and Fuel Economy (도로상의 배출가스 측정에 의한 배출계수 및 연료소비효율 산출 연구)

  • Lee, Tae-Woo;Lee, Beom-Ho;Cho, Seung-Hwan;Park, Jun-Hong;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.90-101
    • /
    • 2009
  • An objective of this study is to suggest a procedure to evaluate vehicle emissions regardless of the driving pattern. Field experiments using portable emission measurement system were conducted under the real world driving cycle. Standardized average for NOx, $CO_2$ emission and fuel consumption rates were calculated while the vehicle specific power distribution within each vehicle speed bin was taken into consideration. Composite emission factor and fuel economy, which were obtained based on the standardized average results and traffic statistics, showed good similarity to those acquired through the conventional chassis dynamometer tests qualitatively as well as quantitatively. Considering that a conventional method obviously has a limitation to reflect various characteristics of the real world, the new approach suggested in this study can be used as an alternative procedure to collect more specific data to establish the mobile emission factors.

Assessment of DMS photochemistry at Jeju Island During the Asian Oust-Storm Period of Spring 2001 : Comparison of Model Simulations with Field Observations

  • Shon, Zang-Ho;Hilton Swan;Keith N. Bower;Kim, Ki-Hyun;Lee, Gangwoong;Kim, Jiyoung
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.343-343
    • /
    • 2002
  • This study examines the influence of long-range transport of dust particles and air pollutants on both local/regional DMS oxidation chemistry and the distribution of sulfur compounds at Jeju Island (33.17$^{\circ}$ N. 126.10$^{\circ}$ E) during the Asian dust-storm(ADS) period in April 2001. The atmospheric concentrations of these sulfur species were measured at a ground station on Jeju Island. Korea as Part of the ACE-Asia intensive operation. Three ADS events were observed during the periods of 10-12, 13-14. and 25-26 April. respectively. The concentrations of DMS and CS$_2$ were higher during the ADS period than during the non-Asian-dust-storm (NADS) period. Conversely. a difference in SO$_2$ levels during the ADS period was not distinguishable from those during the NADS period. The diurnal variation pattern of DMS observed was largely different from that in the remote marine boundary layer. DMS loss by NO$_3$ in the atmospheric boundary layer was dominant due to significantly high NOx levels influenced by the long-range transport of pollutants from East Asia to Jeju Island The DMS maximum during the ADS period was observed in the late afternoon. The oceanic fluxes of DMS during the ADS and NADS periods were estimated to be 5.7$\pm$2.3 and 2.9 (+2.8/-1.5) mole m$^{-2}$ day$^{-1}$ . respectively. The contribution of oxidized DMS to SO$_2$ levels at Jeju Island during the study period was found to be insignificant.

  • PDF

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

Effects of Manganese Precursors on MnOx/TiO2 for Low-Temperature SCR of NOx (NOx제거용 MnOx-TiO2 계 저온형SCR 촉매의 Mn전구체에 따른 영향)

  • Kim, Janghoon;Shin, Byeong kil;Yoon, Sang hyeon;Lee, Hee soo;Lim, Hyung mi;Jeong, Yongkeun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.201-205
    • /
    • 2012
  • The effects of various manganese precursors for the low-temperature selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyses. $MnO_x/TiO_2$ catalysts were prepared from three different precursors, manganese nitrate, manganese acetate(II), and manganese acetate(III), by the sol-gel method. The manganese acetate(III)-$MnO_x/TiO_2$ catalyst tended to suppress the phase transition from the anatase structure to the rutile or the brookite after calcination at $500^{\circ}C$ for 2 h. It also had a high specific surface area, which was caused by a smaller particle size and more uniform distribution than the others. The change of catalytic acid sites was confirmed by Raman and FT-IR spectroscopy and the manganese acetate(III)-$MnO_x/TiO_2$ had the strongest Lewis acid sites among them. The highest de-NOx efficiency and structural stability were achieved by using the manganese cetate(III) as a precursor, because of its high specific surface area, a large amount of anatase $TiO_2$, and the strong catalytic acidity.

A Study on Numerical Analysis of Flow Uniformity According to Length and Degree Change of Mixed-Evaporator in 500 PS SCR Reactor (500 PS SCR 반응기 혼합증발관 길이와 각도 변화에 따른 유동균일도에 대한 수치해석적 연구)

  • Seong, Hongseok;Lee, Chungho;Suh, Jeongse
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.337-342
    • /
    • 2016
  • A marine SCR System is emerging as an alternative to comply with NOx Tier III Emission standards, a restriction on greenhouse gas from vessels implemented by the International Maritime Organization. The system is greatly affected by the uniformity of the fluid flowing into the catalyst, so the performance of the catalyst of an SCR system needs to be guaranteed. This study conducted research on a mixed evaporator of an SCR system, which is one of the factors affecting the uniformity of the fluid. When the angle of the mixed evaporator is set to $90^{\circ}$, the fluid uniformity is at its highest at 83%, under the condition that the length of the mixed evaporator be 3.5 D. When the length was 3.5 D and less, the fluid uniformity had a tendency to improve relative to the case without a bent pipe. However, a longer mixed evaporator results in a more perfect liquidity development in the pipe with a liquidity distribution similar to the case where no curved pipe is formed in front of the catalyst. A lower angle for the mixed evaporator results in a lower flow uniformity, and a longer length of the mixed evaporator results in a lower difference in the flow uniformity caused by the angle. The flow uniformity can be improved by 6% with a mixed evaporator, which confirmed that all factors applied to an SCR system have a close relationship with the efficiency.

A Study on the Emissions Characteristics of a LPG Vehicle According to Various Test Modes and Ambient Conditions (다양한 시험모드와 환경조건에 따른 LPG 차량의 배출특성 연구)

  • Lee, Min-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions of automotive had many problem that cause of ambient pollution, health effects. Based on various test modes and ambient conditions, this paper discusses the characteristics of LPG on exhaust emissions and greenhouse gases. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of vehicle test mode and ambient condition, exhaust emission, greenhouse gas emission was analyzed.

Production of Silver Impregnated Bamboo Activated Carbon and Reactivity with NO Gases (은첨착 대나무 활성탄의 제조와 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong;Lee, Geun-Lim
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.807-813
    • /
    • 2014
  • The Ag-impregnated activated carbon was produced from bamboo activated carbon by soaking method of silver nitrate solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. Soaking conditions are the variation of silver nitrate solution concentration (0.002~0.1 mol/L) and soaking time (maximum 24 h). The specific surface area and pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of used activated carbon. Carbon-NO reactions were carried out with respect to reaction temperature ($20{\sim}850^{\circ}C$) and NO gas partial pressure (0.1~1.8 kPa). As results, Ag amounts are saturated within 2h, Ag amounts increased 1.95 mg Ag/g (0.2%)~ 88.70 mg Ag/g (8.87%) with the concentration of silver nitrate solution in the range of 0.002~0.1 mol/L. The specific volume and surface area of bamboo activated carbon of impregnated with 0.2% silver were maximum, but decreased with increasing Ag amounts of activated carbon due to pore blocking. In NO reaction, the reaction rate of impregnated bamboo activated carbon was retarded as compare with that of bamboo activated carbon. Measured reaction orders of NO concentration and activation energy were 0.63[BA], 0.69l[BA(Ag)] and 80.5 kJ/mol[BA], 66.4 kJ/mol[BA(Ag)], respectively.