• Title/Summary/Keyword: NOx Level

Search Result 217, Processing Time 0.026 seconds

A Study on the Characteristics of NOx and Smoke for Diesel Engine by Fuel (연료성상에 따른 디젤엔진의 질소산화물 및 스모크 배출특성에 관한 연구)

  • Nam, Jeong-Gil;Lee, Don-Chool;Han, Won-Hui;Park, Jeong-Dae;Kang, Dae-Sun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.145-146
    • /
    • 2006
  • The main objective of this research is to develop a system which will provide a more efficient fuel saying measure for the current marine products industry situation caused by the increased cost of oil. For that function, the developed system has been verified using the medium of blending oil known as the MF 30 class. As a result, MF 30 was confirmed meeting the International Standard for NOx emissions and content of Sulfur. Oil composition and soot level analysis showed that it is acceptable to use MF 30 class in condition of proper engine running operation and pre-refinery treatment.

  • PDF

Study on Low Pressure Loop EGR System for Heavy-duty Diesel Engine to Meet EURO-5 NOx Regulation (LPL EGR System 적용 대형 디젤엔진의 EURO-5 NOx 규제대응에 관한 연구)

  • Lee, K.S.;Baek, M.Y.;Park, H.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.12-17
    • /
    • 2007
  • Recently, many small and medium size diesel vehicles have been equipped with turbocharger and EGR system to get high performance and reduce $NO_x$ emissions but its application to heavy-duty diesel engine is not common yet. In this work, the simulation model for EURO-3 engine was developed using WAVE and then its performance and emission level were verified by comparing with experimental results. The possibility of current EURO-3 engine equipped with LPL EGR system which would be satisfied the EURO-5 regulation are examined. ESC 13 mode was chosen as the primary engine test mode, and the injection timing and fuel quantity were changed to compensate the lost engine performance caused by EGR. The system developed in this study shows that the current EURO-3 engine could satisfy EURO-5 $NO_x$ regulation by applying LPL EGR.

  • PDF

Diesel Combustion Strategies Effect on Exhaust Emissions and Hydrocarbon Species (디젤 연소 전략에 따른 배기가스 및 탄화수소 종 분석)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.759-765
    • /
    • 2012
  • This study investigates the effect of diesel combustion strategies on exhaust emissions and hydrocarbon species emissions for a 1.7 L common rail direct injection diesel engine at 1500 rpm and 3.9 bar BMEP. The first strategy is a method to adopt no EGR with a split injection composed of pilot and main injection (split injection). The second is to adopt a moderate EGR rate with main injection only (single-1). The third is to use a high level of EGR and main injection with rail pressure increase, $i.e.$ low-temperature diesel combustion (single-2). Split injection and single-1 showed a renowned phenomenon of a PM-NOx trade-off, whereas single-2 was observed of a PM-NOx trade-off to reduce PM and NOx simultaneously. HC speciation results show that the split injection produced the least amount of HC species, regardless of the carbon number bin, followed by single-1 and single-2. The ratios of methane, acetylene, and CO to THC increased as a combustion A/F ratio is richer due to reduced oxygen content in the vicinity of the combustion zone, thus enhancing pyrolysis.

Effects of Dietary Intervention and Simvastatin on Plasma Nitric Oxide in Patients with Hyperlipidemia

  • Yim, Jungeun;Choue, Ryowon;Park, Changshin;Cha, Youngnam;Chyun, Jonghee
    • Nutritional Sciences
    • /
    • v.7 no.4
    • /
    • pp.214-217
    • /
    • 2004
  • Dietary intervention and simvastatin is beneficial in the prevention cardiovascular diseases by lowering plasma lipid levels. Endothelial dysfunction is associated with coronary artery disease and its risk factors and is reversed by dietary intervention. It has been suggested that hyperlipidemia contributes to the development of atherosclerosis by increasing inducible nitric oxide synthase (iNOS) expression via intimal thickening. Statins treatment has been found to decrease iNOS expression and atherogenensis in animal models. We hypothesized that dietary intervention and simvastatin therapy could decrease plasma nitric oxide in hypercholesterolemic patients, which would suggest the opportunity for modulation of iNOS expression through the use of statins in a clinical situation. We measured the plasma levels of nitrite and nitrate (NOx) in 19 hyperlipidemia patients. The subjects were under dietary intervention following simvastatin therapy for 12 weeks. As a result, the plasma level of NOx, stable metabolites of nitric oxide (NO), saw a two-fold elevation in hyperlipidemic patients as compared to normal levels. Although 12 weeks of dietary intervention did not lower NOx levels, subsequent 12-week simvastatin (10 mg/day) treatment, along with dietary intervention, lowered NOx levels significantly. This NOx reduction, induced by simvastatin therapy, positively correlated with lowered coronary risk factors (r=0.40, p=0.02). It indicated that simvastatin therapy decreases plasma NOx levels by, perhaps, decreasing iNOS expression or activity leading to the attenuation of the development of neointima.

Nitrogen Oxides Removal Characteristics of SNCR-SCR Hybrid System (SNCR-SCR 하이브리드 시스템의 질소산화물 제거 특성)

  • Cha, Jin Sun;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.658-663
    • /
    • 2011
  • The SNCR-SCR (selective non-catalytic reduction-selective catalytic reduction) hybrid system is an economical NOx removal system. In this study, the effect of the operating parameters of the SNCR-SCR hybrid system on NOx removal efficiency was investigated. When the SNCR reactor was operated at a temperature lower than the optimum temperature ($900{\sim}950^{\circ}C$), an additional NO removal is obtained basesd on the utilization of $NH_3$ slip. On the other hand, the SNCR reactor operated above the temperature resulted in no additional NO removal of SCR due to decomposition of $NH_3$. Therefore, the SNCR process should be operated at optimum temperature to obtain high NO removal efficiency and low $NH_3$ slip. Thus, it is important to adjust NSR (normalized stoichiometric ratio) so that $SR_{RES}$ can be maintained at an appropriate level.

NADPH Oxidase 4-mediated Alveolar Macrophage Recruitment to Lung Attenuates Neutrophilic Inflammation in Staphylococcus aureus Infection

  • Seunghan Han;Sungmin Moon;Youn Wook Chung;Ji-Hwan Ryu
    • IMMUNE NETWORK
    • /
    • v.23 no.5
    • /
    • pp.42.1-42.21
    • /
    • 2023
  • When the lungs are infected with bacteria, alveolar macrophages (AMs) are recruited to the site and play a crucial role in protecting the host by reducing excessive lung inflammation. However, the regulatory mechanisms that trigger the recruitment of AMs to lung alveoli during an infection are still not fully understood. In this study, we identified a critical role for NADPH oxidase 4 (NOX4) in the recruitment of AMs during Staphylococcus aureus lung infection. We found that NOX4 knockout (KO) mice showed decreased recruitment of AMs and increased lung neutrophils and injury in response to S. aureus infection compared to wildtype (WT) mice. Interestingly, the burden of S. aureus in the lungs was not different between NOX4 KO and WT mice. Furthermore, we observed that depletion of AMs in WT mice during S. aureus infection increased the number of neutrophils and lung injury to a similar level as that observed in NOX4 KO mice. Additionally, we found that expression of intercellular adhesion molecule-1 (ICAM1) in NOX4 KO mice-derived lung endothelial cells was lower than that in WT mice-derived endothelial cells. Therefore, we conclude that NOX4 plays a crucial role in inducing the recruitment of AMs by controlling ICAM1 expression in lung endothelial cells, which is responsible for resolving lung inflammation during acute S. aureus infection.

A Study on the Application of the Lean Boosting in a Hydrogen-fueled Engine with the SI and the External Mixture (흡기관 분사식 수소 SI기관의 희박과급 적용에 관한 연구)

  • Lee, Kwangju;Lee, Jonggoo;Lee, Jongtai
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2013
  • In order to achieve simultaneously the ultra-low NOx, the high power and the high efficiency in a hydrogen-fueled engine with SI and the external mixture, the effects of low temperature combustion, performance and exhaust are compared and analyzed by the application of the lean boosting. As the results, the decrease rate of the high temperature in the hydrogen is less decreased than the other fuels by high constant-volume specific heat. However, when the conditions of 1.7bar and ${\Phi}=0.33$ are reached by the lean boosting, the maximum gas temperature of hydrogen is decreased under the temperature of NOx formation and it is possible to stabilize combustion below 2% of COVimep. Also, at that condition, it is feasible to achieve simultaneously NOx-free and the power of gasoline level. Therefore, it is found that the lean boosting is useful in the hydrogen-fueled engine.

Fabrication and Characteristic of NOx Gas Sensor by Using $SnO_2$ Nanowires ($SnO_2$ 나노와이어를 이용한 NOx 가스센서 제작 및 특성평가)

  • Kang, Gyo-Sung;Kwon, Soon-Il;Park, Jea-Hwan;Yang, Kea-Joon;Lim, Dong-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.40-41
    • /
    • 2007
  • $SnO_2$ nanowires are used at the nanoscale level for the electrical transduction of the gas interaction with these sensing materials. We report on a study of high sensitivity and fast NOx gas sensor. We focused on improving the response time and refresh time by growth nanowires on the trench structure of Si substrate as air path. To improve refresh time we applied the trench structure with depth of $10\;{\mu}m$ by the inductively coupled plasma reactive ion etching(ICP-RIE). The fabricated device was measured at temperature of $200{\sim}300^{\circ}C$. The sensor exhibit ultra-fast and reversible electrical response (t90% ~4 s for response and ~3 s for recovery).

  • PDF

Numerical Study on the Characteristics of Combustion and Emission in Pulverized Coal-fired Boiler for Using High Moisture Coal and Dry Coal (석탄화력보일러에서 고수분탄 및 건조석탄 사용에 따른 연소 및 배기배출 특성에 대한 전산해석 연구)

  • Ahn, Seok-Gi;Kim, Kang-Min;Kim, Gyu-Bo;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.118-126
    • /
    • 2017
  • This study was performed to investigate the characteristics of combustion and emissions in pulverized coal fired boiler for using high moisture coal and dry coal through computational fluid dynamics(CFD). We validated this boiler model with performance data of the boiler. The results of flow characteristics showed that climbing speed of gases was increased as blending ratio of high moisture coal was increased. It can decrease a residence time of fuel in the furnace. And it influence coal combustion. The coal burnout and NOx generation in burner level were decreased as increasing blending ratio of high moisture coal. The gas temperature and NOx formation were increased after OFA level due to coal burnout delay.

The Effect of Biodiesel Blend Fuels As Reductants on NOx Conversion Efficiency of HC_SCR (환원제로서 바이오디젤 혼합연료가 HC-SCR의 NOx 변환효율에 미치는 영향 연구)

  • Song, Hoyoung;Lee, Minho;Kim, Kiho
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.140-145
    • /
    • 2015
  • This study was aimed at analyzing NOx conversion characteristics in the HC-SCR with biodiesel content changes of the secondary fuel injection (BD0, BD10, BD25). Test conditions for temperature were set to $290^{\circ}C$, $320^{\circ}C$ and $350^{\circ}C$ considering the upstream temperature of a HC-SCR, distillation of the secondary injected fuels and etc. The amount of fuel injection was adjusted with a fixed space velocity of 55,000(1/h). According to the test results of distillation, the T90 was the same level about $350^{\circ}C$ on all test fuels and the amount of evaporation was reduced at lower than $350^{\circ}C$ temperature condition with increasing biodiesel content. As biodiesel content which is mixed with the secondary injected fuel is increased, NOx reduction efficiency was determined to decrease. The difference of the Nox reduction ratio in a high temperature condition($320^{\circ}C$ and $350^{\circ}C$) than the low temperature($290^{\circ}C$) was more significant. These results are thought to be poor evaporation properties (distillation) and high molecular weight of the biodiesel.