• 제목/요약/키워드: NOx Emissions

검색결과 734건 처리시간 0.024초

다양한 주행거리를 가지는 직접분사방식 가솔린 자동차의 배출특성에 관한 연구 (Investigation on the Exhaust Emission Characteristics of GDI Vehicles According to Various Mileage)

  • 김형준;길지훈;강건우;김선문;김정수
    • 한국분무공학회지
    • /
    • 제22권1호
    • /
    • pp.8-12
    • /
    • 2017
  • Recently, manufacture and sales of passenger car with GDI (Gasoline Direct injection) were dramatically increased in Korea. In this study, investigation on the exhaust emission characteristics of GDI vehicles according to mileage were conducted by using chassis dynamometer and emission analyzer. Test cars selected 5 types with G4FD engine (1600 cc) and emissions of total 14 vehicles analyzed. Measurement and evaluation on emissions (CO, NOx, NMOG, $CO_2$) characteristics of GDI vehicles with mileages from 40,000 to 80,000 km in certification driving cycle (CVS-75) were carried out in this study. It is revealed that emission results of all test cars shows below emission standard, NMOG emission value of about 80,000 km doubled that of 40,000 km and emission increased by accumulated mileage. Also, increasing pattern of NOx emissions shows when the vehicle mileages was increased and $CO_2$ emission increasing trend obviously do not show according to mileages.

수도권 배출량 저감에 따른 오존 발생 과정 분석에 관한 수치연구 (Numerical Study on the Process Analysis of Ozone Production due to Emissions Reduction over the Seoul Metropolitan Area)

  • 정여민;이순환;이화운;전원배
    • 한국환경과학회지
    • /
    • 제21권3호
    • /
    • pp.339-349
    • /
    • 2012
  • In order to clarify the impact of emissions reductions on the air quality over Metropolitan area of Korean Peninsula, several numerical experiment and analysis of integrated process rate(IPR) of ozone were carried out. Numerical models used in this study are WRF for the estimate the meteorological elements and CMAQ for assessment of ozone concentration. As result in the sensitive test of VOC/NOx reduction experiments, although VOC reduction tends to induce the different impact on the advection and photochemical reaction rate of ozone in urban area and rural area, the mechanism of ozone appeared to be more sensitive to the reduction of VOC than that of NOx over the metropolitan and its surround area. So the control of VOC emission inventories is an effective means to decrease the ozone concentrations around this area.

항공기 배출량 산정 방법에 따른 공항주변 대기오염 영향분석연구 (Impact of Air Pollutant Emissions from Aircraft on the Air Pollution around Airport)

  • 한승재;유정우;임윤진;이순환;이화운
    • 한국환경과학회지
    • /
    • 제23권12호
    • /
    • pp.2089-2099
    • /
    • 2014
  • Emissions from aircraft have impacts on the air pollution of airport and the surrounding area. There are methods of emissions calculated as Tier 1, Tier2, Tier 3A and Tier 3B. Thus, this study investigated emissions from aircraft at the Gimhae International Airport using EDMS(Emissions & Dispersion Modeling System) program. Results of estimation from aviation emissions, Tier 3B considering all parts which can occur at the airport has the largest amount emissions. In order to understand the relation between aviation emissions and distribution of ozone concentration over airport area, numerical evaluation were carried out. Although the difference of surface ozone distribution between numerical assessment with and without aviation emissions was little, effects of air pollution at airport area from aviation emissions of NOx and VOCs.

15kW급 미분탄 연소로내에서 바이오매스 혼소율 변화에 따른 연소 특성 비교 (Combustion Charateristics of Biomass Blends on a 15KW Pulverized Coal furnaces)

  • 이상민;성연모;최민성;문철언;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.41-44
    • /
    • 2014
  • This study focused on the effect of the biomass blended ratio on air-staged pulverized coal furnace. The hybrid NOx reduction technology between fuel blending and air staging has been applied in an air-staged pulverized coal fired furnace. The results indicated that co-firing biomass with coal could reduce NOx emissions in an air-staged combustion. In addition, carbon burnout and flame temperature increased under the air-staged condition. A dominant synergistic effect on NOx reduction and carbon burnout was observed when biomass co-firing with coal was applied in air staged combustion.

  • PDF

직접분사식 디젤기관에서 함산소연료 첨가에 의한 매연과 NOx 동시 저감에 관한 실험적 연구 (An Experimental Study on the Simultaneous Reduction of Smoke and NOx by Oxygenated Fuel Additives in DI Diesel Engine)

  • 오영택
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.106-114
    • /
    • 1996
  • Extensive experiments were conducted to investigate the emission of DI diesel engine by using DMC(dimethyl carbonate) as an oxygenated fuel additives. The results indicate that smoke reduces almost linearly with fuel oxygen contents. Reductions of HC and CO were attained noticeably, while a small increase in NOx was encountered concurrently. The effective reduction in smoke with DMC was maintained with the presence of CO2, which suggested a low NOx and smoke operation could be obtained in combination of using oxygenated fuel and EGR. Further experiment was conducted a thermal cracking set-up for mechanism studies.

  • PDF

예열공기온도와 희석비율에 따른 동축 확산 화염의 연소 특성 (Combustion characteristics of coaxial diffusion flame with preheated air temperature and dilution level)

  • 김진식;곽지현;전충환;장영준
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.51-56
    • /
    • 2001
  • An experiment using preheated air in the coaxial diffusion flame burner was carried out in order to decrease NOx emission and improve the thermal efficiency. Preheated air combustion generally produces high NOx emissions but it was known very well to reduce NOx emission by diluting the combustion air with inert gas in preheated air combustion. In our study, $N_2$ gas was used for diluent and propane was utilized for fuel. We set the combustion air temperature on 300K, 500K, 700K, 900K and dilution level from 21% to 10% in terms of oxygen concentration. NOx emission increased along increment of combustion air temperature and decreased along increment of dilution level(lowering of oxygen concentration in combustion air). Flame-off limit with dilution level enhanced, flame length became longer and the location of maximum flame temperature became lower with increasing of combustion air temperature.

  • PDF

오리멀전의 플래쉬 분무 연소특성에 관한 연구 (A Study on Flash Spary Combustion Characteristics of Orimulsion)

  • 신명철;류태우;김세원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.99-103
    • /
    • 2005
  • This study focused on the use of orimulsion in industrial combustion systems. Orimulsion is a bitumen-in-water emulsified fuel, which contains a thirty percent water. Orimulsion has relatively high levels of sulfur and nitrogen compared to many fuel oils, and has been the subject of much debate regarding the environmental impacts of its use. The goal of this research is to analyse the effect of flash spray combustion characteristics of orimulsion on NOx and particulate material reduction. For the flash spray of orimulsion, it is heated by $150^{\circ}C$. The effects of fuel heating temperatures on NOx and particulate material emissions were investigated experimentally. As the fuel temperature was increased, NOx and particulate material concentrations in flue gas were decreased.

  • PDF

오리멀전의 플래쉬 분무 및 연소특성에 관한 연구 (A Study on Flash Spray and Combustion Characteristics of Orimulsion)

  • 신명철;류태우;김세원;방병열
    • 한국연소학회지
    • /
    • 제10권4호
    • /
    • pp.18-23
    • /
    • 2005
  • This study focused on the use of orimulsion in industrial combustion systems. Orimulsion is a bitumen-in-water emulsified fuel, which contains a thirty percent water. Orimulsion has relatively high levels of sulfur and nitrogen compared to many fuel oils, and has been the subject of much debate regarding the environmental impacts of its use. The goal of this research is to analyze the effect of flash spray combustion characteristics of orimulsion on NOx and particulate material reduction. For the flash spray of orimulsion, it is heated to $150^{\circ}C$. The effects of fuel heating temperatures on NOx and particulate material emissions were investigated experimentally. As the fuel temperature was increased, NOx and particulate material concentrations in flue gas were decreased.

  • PDF

디젤기관에서 함산소연료(DMC)와 Cooled EGR방법에 의한 매연과 NOx의 동시저감 (Simultaneous Reduction of Smoke and NOx with Oxygenated Fuel(DMC) and Cooled EGR method in Diesel Engine)

  • 오영택;최승훈
    • 동력기계공학회지
    • /
    • 제6권1호
    • /
    • pp.27-35
    • /
    • 2002
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for direct injection diesel engine. It is tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has four kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission and brake specific fuel consumption rate have been investigated. Dimethyl carbonate(DMC) contains oxygen component 53.3% in itself, and it is a kind of effective oxygenated fuel of carbonate group that the smoke emission of DMC is reduced remarkably in comparison with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and EGR method.

  • PDF

EFFECTS OF METHANOL-REFORMULATED FUELS ON TRANSIENT CHARACTERISTICS FOR AN SI ENGINE

  • Choi, S.H.;Kim, G.B.;Chang, Y.J.;Jeon, C.H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.311-319
    • /
    • 2004
  • There are many methods to test engine emissions depending on the regulations used such as FTP-75(CYS-75) mode, 10-15 mode and ECE-15 mode. Most of these modes consist of transient conditions such as cranking, rapid acceleration or deceleration modes. In this experimental research, the transient characteristics including cranking and accelerating mode in SI engines were studied to compare pure gasoline with methanol-reformulated fuels for performance and exhaust emissions. The results show that methanol-reformulated fuels have a better emissions reduction rate than that of pure gasoline especially for HC, CO and NOx emissions during cranking mode. The acceleration performances conform to the results of the distillation curve and the CO concentration for RM50 varies slightly in acceleration mode.