• Title/Summary/Keyword: NO_X$

Search Result 5,659, Processing Time 0.038 seconds

Influential Factors for NO_X Reduction Performance of Urea-SCR System for an In-use Medium Duty Diesel Engine (중형 운행 경유차용 Urea-SCR 시스템의 아랫첨자 $NO_X$ 저감성능에 미치는 영향인자)

  • Kim, Hong-Suk;Jeong, Young-Il;Song, Myoung-Ho;Lee, Seang-Wock;Park, Hyun-Dae;Hwang, Jae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.154-161
    • /
    • 2009
  • This study is a part of project of urea-SCR system development for an in-use medium duty diesel engine. This study shows the effect of ammonia oxidation catalyst and SCR volume on $NO_X$ reduction performance. When AOC(Ammonia Oxidation Catalyst) is not used, the urea injection should be controlled accurately to prevent $NH_3$ slip. However, it is found that the accurate $NH_3$ slip control is not easy without AOC in real engine operating conditions, because $NH_3$ and $NO_X$ reaction characteristics change with many factors such as exhaust gas temperature and $NH_3$ absorbance on SCR. SCR volume is also one of important design parameters. This study shows that $NO_X$ reduction efficiency increases with increase of SCR volume especially at high space velocity and low exhaust gas temperature conditions. Additionally, this paper shows the emissions of EURO-2 medium duty diesel engine can be improved to the level of EURO-5 with a DPF and urea-SCR system.

Effect of Ozone Injection into Exhaust Gas on Catalytic Reduction of Nitrogen Oxides (촉매 공정의 배기가스 질소산화물 저감 성능에 미치는 오존주입의 영향)

  • Yun, Eun-Young;Mok, Young-Sun;Shin, Dong-Nam;Koh, Dong-Jun;Kim, Kyong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.330-336
    • /
    • 2005
  • The ozone injection method was proposed to improve the catalytic process for the removal of nitrogen oxides ($NO_x$). Nitric oxide (NO) in the exhaust gas was first oxidized to nitrogen dioxide ($NO_2$) by ozone produced by dielectric barrier discharge, and then the exhaust gas containing the mixture of NO and $NO_2$ was directed to the catalytic reactor where both NO and $NO_2$ were reduced to $N_2$ in the presence of ammonia as the reducing agent. A commercially available $V_2O_5-WO_3/TiO_2$ catalyst was used as the catalytic reactor. The $NO_2$ content in the mixture of NO and $NO_2$ was changed by the amount of ozone added the exhaust gas. The effect of reaction temperature, initial $NO_x$ concentration, feed gas flow rate, and ammonia concentration on the removal of $NO_x$ at various $NO_2$ contents was examined and discussed. The increase in the content of $NO_2$ by the ozone injection remarkably improved the performance of the catalytic reactor, especially at low temperatures. The present ozone injection method appears to be promising for the improvement of the catalytic reduction of $NO_x$.

Phosphorus Removal by DPAOs (Denitrifying Phosphorus Accumulating Organisms) in Aerobic Condition (호기 조건에서 DPAOs (Denitrifying Phosphorus Accumulation Organisms)에 의한 인 제거)

  • Jeong, No-Sung;Park, Young-Seek;Kim, Dong-Seog
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • This study was carried out to get phosphorus uptake rate in aerobic condition with nitrate and nitrite. Nitrate and nitrite inhibited phosphorus accumulating organisms' (PAOs') luxury uptake in aerobic condition. Nitrite awfully decreased the phosphorus uptake rate in aerobic condition. At the influent of 10 mg ${NO_3}^-$-NL, the phosphorus uptake was decreased to 52% comparing that at no influent of nitrate. And at the influent of 10 mg ${NO_2}^-$-NL, the phosphorus uptake was decreased to 28% comparing that at no influent of nitrite. At the influent of 20 mg ${NO_3}^-$-NL, nitrite and nitrate were co-existed and the phosphorus uptake rate was decreased to 16% comparing that at no influent of nitrite and nitrate. Also, the denitrification was occurred by denitrifying glycogen accumulating organisms (DGAOs)/denitrifying phosphorus accumulating organisms (OPAOs) in spite of aerobic condition, and the phosphorus uptake rate was increased by the decrease of influent nitrate concentration at the aerobic condition. The inflection point in the phosphorus uptake rate was shown at the nitrite concentration of 1.5~2 mg/L.

Molybdenum(Ⅴ)-Oxo Complexes with Oxygen, Nitrogen and Sulfur Donors. Synthesis, Spectral and Electrochemical Properties (산소, 질소, 그리고 황 주개 원자의 몰리브덴(Ⅴ)-산소 착물 합성과 분광학적 및 전기화학적 성질)

  • Kim, Hee-Jung;Koo, Bon-Kweon
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.6
    • /
    • pp.434-439
    • /
    • 1995
  • Six-coordinate molybdenum(Ⅴ)-oxo complexes, (R4N)[MoO(NCS)2L](R=CH3, C2H5, n-C4, H9) with S-methyl-3-(2-hydroxy-x-phenyl)methylenedithiocarbazate(L1: x=5-H) and its derivatives (L2:x=5-CH3, L3: x=3-CH3O, L4: x=5,6-C4H4 and L5: x=5-NO2) have been synthesized and the structural, spectral and electrochemical properties of the complexes have been characterized by elemental analysis, molar conductivity, UV-Vis, IR, 1H NMR, and CV (cyclic voltammetry).

  • PDF

Domestic Ozone Sensitivity to Chinese Emissions Inventories: A Comparison between MICS-Asia 2010 and INTEX-B 2006 (중국 배출량 목록에 대한 국내 오존 민감도 분석: MICS-Asia 2010와 INTEX-B 2006 비교사례)

  • Kim, Soontae;Bae, Changhan;Kim, Eunhye;You, Seunghee;Bae, Minah;Lee, Jae-bum;Seo, Inseok;Lim, Yongjae;Kim, Byeong-Uk;Kim, Hyun Cheol;Woo, Jung-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.480-496
    • /
    • 2017
  • CMAQ (Community Multiscale Air Quality)-HDDM (High-order Direct Decoupled Method) simulations with MICS-Asia 2010 and INTEX-B 2006 emissions inventories were performed to investigate the impact of Chinese $NO_x$ and VOC emissions on 1-hr ozone concentrations over South Korea during May to July in 2014. Chinese $NO_x$ and VOC emissions in MICS-Asia 2010 were 60% higher and 100% lower than those in INTEX-B 2006 during the simulation period. It makes the ratio of Chinese VOC to $NO_x$ emissions in INTEX-B 2006 (Case 1) is 3.2 times higher than that in MICS-Asia 2010 (Case 2). When the observed period mean 1-hr ozone concentration averaged across 106 air monitoring sites in the SMA (Seoul Metropolitan Area) was 37.6 ppb, the modeled values were similar to each other; 37.3 ppb for Case 1, and 40.4 ppb for Case 2. Both cases show that daily maximum 1-hr ZOC (Zero-Out Contribution) of Chinese $NO_x$ and VOC emissions were as high as 55 ppb and 35 ppb for the episode respectively. Correlation coefficients between ZOC of Chinese $NO_x$ and VOC emissions and the SMA daily maximum 1-hr ozone were 0.49~0.69. It indicates that Chinese emissions occasionally affect the SMA daily ozone peaks. On the other hand, Case 2 predicted 7 ppb and 1 ppb higher ZOC of Chinese $NO_x$ and VOC emissions than Case 1, when simulated ozone in the SMA is over 80 ppb. It implies that upwind $NO_x$ emissions would be more important than upwind VOC emissions for the long-range transport of ozone in Northeast Asia.

Numerical Study on the Ozone Formation Sensitivity of Precursors Using Adjoint Model around the South-eastern Area of the Korean Peninsula (수반모형을 이용한 한반도 남동지역의 오존 전구물질의 오존 생성 민감도에 관한 수치연구)

  • Park, Soon-Young;Lee, Soon-Hwan;Lee, Hwa Woon;Kim, Dong-Hyeok
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.669-680
    • /
    • 2013
  • Ozone sensitivity analysis with respect to $NO_x$ is conducted around the south-eastern area of the Korean Peninsula. WRF-CMAQ modeling system is used to simulate a local circulation and high ozone episode day. To analyze the sensitivity, the adjoint model for CMAQ is adopted in this study. The purpose of current study is to investigate the location that affects a day time ozone concentration of these receptors on the high ozone episode day. Adjoint sensitivity analysis for Daegu shows two areas of influence. One is the range from the neighboring location to Pohang and it affects mainly on the same day as receptor time. The other is the remote south-eastern area from Daegu. This remote influence area suggests that $NO_x$ emitted on the previous day can change the ozone concentration at receptor time. The influence area for Busan, on the other hand, is originated only from the emission on the previous day because the sea-breeze occurred on the episode day makes low influence of surrounding emission. The cross sectional analysis reveals that $NO_x$ advection is important not only near the surface of land but also around the height of boundary layer.

A Study on Characteristics of an Integrated Urea-SCR Catalytic Filter System for Simultaneous Reduction of Soot and NOX Emissions in ECU Common-rail Diesel Engines (ECU 커먼레일 디젤기관에 있어서 매연 및 NOX 배출물 동시 저감용 일체형 요소-SCR 촉매필터 시스템의 특성에 관한 연구)

  • Bae, Myung-Whan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.111-120
    • /
    • 2014
  • The aim of this study is to develop an integrated urea-SCR catalytic filter system for reducing soot and $NO_X$ emissions simultaneously in diesel engines. In this study, the characteristics of exhaust emissions relative to reactive activation temperature under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with the integrated urea-SCR $MnO_2-V_2O_5-WO_3/TiO_2/SiC$ catalytic filter system operating at three kinds of engine speeds. The urea-SCR reactor is used to reduce $NO_X$ emissions, and the catalytic filter system is used to reduce soot emissions. The reactive activation temperature is very important for reacting a reducing agent with exhaust emissions. The reactive activation temperatures in this experiment is applied to 523, 573 and 623 K. The fuel is sprayed by the pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the $NO_X$ conversion rate is the highest as 83.9% at the reactive activation temperature of 523 K in all experimental conditions of engine speed and load, and the soot emissions shown by the average reduction rate of approximately 93.3% are almost decreased below 0.6% in all experimental conditions regardless of reactive activation temperatures. Also, the THC and CO emissions by oxidation reaction of Mn, V and Ti are shown in the average reduction rates of 70.3% and 38% regardless of all experimental conditions.

Non-Thermal Plasma Technique for Removing $SO_2$ and $NO_x$ from Combustion Flue Gas (연소가스내 탈황탈질처리를 위한 저온 플라즈마 기술)

  • Song, Yeong-Hun;Sin, Wan-Ho;Kim, Seok-Jun;Jang, Gil-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.69-76
    • /
    • 1997
  • Industrial-scale pulse corona process to remove $SO_2$ and $NO_x$ simultaneously from combustion flue gas has been studied. The pilot plant built in the present study treats 2,000 $Nm^3$/hr of flue gas from a boiler. The geometry of the pulse corona reactor is similar to that of an electrostatic precipitator commonly used in industry, A thyratron switch and magnetic pulse compressors, which can generate up to 130 kV of peak pulse voltage and up to 30 kW of average pulse power, have been used to produce pulsed corona. The removal efficiencies of $S0_2$ and $NO_x$ with the present process are maximum of 95 % and 85 %, respectively. Electrical power consumption to produce the pulsed corona, which has been one of the major difficulties to apply this process to industry, has been evaluated in the present study. The results showed that the power consumption can be reduced significantly by simultaneous addition of hydrocarbon injection and heterogeneous phase reactions to the process.

  • PDF

A Study of Characteristics of Combustion Radical and Exhausted Emissions in a Radiant Burner with Porous Ceramic Mat (다공성 세라믹 매트를 이용한 복사버너에서의 연소라디칼 특성과 배기배출물에 관한 연구)

  • Kim, Young-Su;Cho, Seung-Wan;Kim, Gyu-Bo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.539-546
    • /
    • 2007
  • An experimental study was performed to investigate the characteristics of chemiluminescence in a radiant burner, varying the excess air ratio from 0.91 to 1.67 at firing rate 80.5 to 134.2 kW/m2 on $OH^*,\;CH^*,\;{C_2}^*$ in LNG-Air premixed flames. The signals from electronically excited states of $OH^*,\;CH^*,\;{C_2}^*$ were detected using a Intensified Couple Charged Detector (ICCD) camera. The measurements of exhausted emission were made to investigate the correlation between chemiluminescence and emissions. The chemiluminescence intensity was increased with increase of firing rate like characteristics of $NO_x$ emission. $NO_x$ also increased with increase of firing rate and excess air ratio. It is found that offset of firing rate is more dominant excess air ratio $NO_x$ emission. The maximum chemiluminescence intensity occurs near the stoichiometric excess air ratio or lean conditions in case of high firing rate and the maximum intensity occurs rather than rich conditions in case of relatively low firing rate. Amount of $NO_x$ emission is maximum at near stoichiometric excess air ratio, which is chemiluminescence intensity is maximum.

THERE ARE NO NUMERICAL RADIUS PEAK n-LINEAR MAPPINGS ON c0

  • Sung Guen Kim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.677-685
    • /
    • 2023
  • For n ≥ 2 and a real Banach space E, 𝓛(nE : E) denotes the space of all continuous n-linear mappings from E to itself. Let Π (E) = {[x*, (x1, . . . , xn)] : x*(xj) = ||x*|| = ||xj|| = 1 for j = 1, . . . , n }. An element [x*, (x1, . . . , xn)] ∈ Π(E) is called a numerical radius point of T ∈ 𝓛(nE : E) if |x*(T(x1, . . . , xn))| = v(T), where the numerical radius v(T) = sup[y*,y1,...,yn]∈Π(E)|y*(T(y1, . . . , yn))|. For T ∈ 𝓛(nE : E), we define Nradius(T) = {[x*, (x1, . . . , xn)] ∈ Π(E) : [x*, (x1, . . . , xn)] is a numerical radius point of T}. T is called a numerical radius peak n-linear mapping if there is a unique [x*, (x1, . . . , xn)] ∈ Π(E) such that Nradius(T) = {±[x*, (x1, . . . , xn)]}. In this paper we present explicit formulae for the numerical radius of T for every T ∈ 𝓛(nE : E) for E = c0 or l. Using these formulae we show that there are no numerical radius peak mappings of 𝓛(nc0 : c0).