• Title/Summary/Keyword: NOESY

Search Result 66, Processing Time 0.024 seconds

Survey of ERETIC2 NMR for quantification

  • Hong, Ran Seon;Hwang, Kyung Hwa;Kim, Suncheun;Cho, Hwang Eui;Lee, Hun Joo;Hong, Jin Tae;Moon, Dong Cheul
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.98-104
    • /
    • 2013
  • The ERETIC (Electronic REference To access In vivo Concentrations)2 method is a new qNMR experimental technique to measure analytes based on the signal of the reference compound without additional hardware equipment. In this study, ERETIC2 method was validated, and we sought to identify whether it would be possible to apply this method to a specific compound analysis of metabolites in plant. The $90^{\circ}$ pulse value (P1) and spin-lattice relaxation time ($T_1$) of each compound were measured for ERETIC2. The $9^1H$ of 3-(trimethylsilyl) propionic-2,2,3,3-$d_4$ acid (TSP) was used as a reference peak for ERETIC 2, and then, a suitable solvent and pulse sequence for each compound were selected. Under the NOESY-presat sequence, the relative accuracy error for quantitative analyses of primary metabolites was within the range of 5%, with the exception of glucose, which showed ${\geq}$ 55% error due to saturation. It showed excellent results for the quantification of glucose by using a $30^{\circ}$ pulse sequence, which did not suppress the water peak. In addition, the quantitative accuracy for secondary metabolites was extremely accurate, with an error ${\leq}$5% when considering the purity of the standard sample. The ERETIC2 method showed outstanding linearity, precision, and accuracy.

The Structural Studies of Biomimetic Peptides P99 Derived from Apo B-100 by NMR

  • Kim, Gil-Hoon;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.136-142
    • /
    • 2020
  • Apolipoprotein B-100 (apo B-100), the main protein component that makes up LDL (Low density lipoprotein), consists of 4,536 amino acids and serves to combine with the LDL receptor. The oxidized LDL peptides by malondialdehyde (MDA) or acetylation in vivo were act as immunoglobulin (Ig) antigens and peptide groups were classified into 7 peptide groups with subsequent 20 amino acids (P1-P302). The biomimetic peptide P99 (KGTYG LSCQR DPNTG RLNGE) out of B-group peptides carrying the highest value of IgM antigens were selected for structural studies that may provide antigen specificity. Circular Dichroism (CD) spectra were measured for peptide secondary structure in the range of 190-260 nm. Experimental results show that P99 has pseudo α-helice and random coil structure. Homonuclear (COSY, TOCSY, NOESY) 2D-NMR experiments were carried out for NMR signal assignments and structure determination for P99. On the basis of these completely assigned NMR spectra and proton distance information, distance geometry (DG) and molecular dynamic (MD) were carried out to determine the structures of P99. The proposed structure was selected by comparisons between experimental NOE spectra and back-calculated 2D NOE results from determined structure showing acceptable agreement. The total Root-Mean-Square-Deviation (RMSD) value of P99 obtained upon superposition of all atoms were in the set range. The solution state P99 has mixed structure of pseudo α-helix and β-turn(Gln[9] to Thr[13]). These NMR results are well consistent with secondary structure from experimental results of circular dichroism. Structural studies based on NMR may contribute to the prevent oxidation studies of atherosclerosis and observed conformational characteristics of apo B-100 in LDL using monoclonal antibodies.

A New Stilbene Dimer and Other Chemical Constituents from Monanthotaxis littoralis with Their Antimicrobial Activities

  • Dongmo, Arnaud Joseph Nguetse;Ekom, Steve Endeguele;Tamokou, Jean-de-Dieu;Tagousop, Cyrille Ngoufack;Harakat, Dominique;Voutquenne-Nazabadioko, Laurence;Ngnokam, David
    • Natural Product Sciences
    • /
    • v.26 no.4
    • /
    • pp.317-325
    • /
    • 2020
  • A new dimer stilbene [Monalittorin (1)] and ten known compounds [engeletin (2), aurantiamide acetate (3), lupeol (4), friedelin (5), quercetin (6), tiliroside (7), rutoside (8), astragalin (9), isoquercitrin (10) and quercimeritroside (11)] have been isolated from the leaves of Monanthotaxis littoralis (Annonaceae). The structures of these compounds were established by interpretation of their data, mainly, HR-TOFESIMS, 1-D NMR (1H and 13C) and 2-D NMR (1H-1H COSY, HSQC, HMBC and NOESY) and by comparison with the literature. The evaluation of their antimicrobial activities against three bacteria (Staphylococcus aureus ATCC 25923, Escherichia coli S2 (1) and Pseudomonas aeruginosa PA01) and three fungal strains (Candida albicans ATCC10231, Candida tropicalis PK233 and Cryptococcus neoformans H99) using broth micro dilution method, showed the largest antimicrobial activities of EtOAc fraction and compounds 1, 5, 6, 8 and 11 (MIC = 8 - 64 ㎍/mL). In addition, EtOAc fraction presented synergistic effect with Vancomycin and fluconazole against the tested microorganisms.

The Structural Studies of Peptide P143 Derived from Apo B-100 by NMR

  • Lee, Ji-Eun;Kim, Gil-Hoon;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.4
    • /
    • pp.58-63
    • /
    • 2021
  • Apolipoprotein B-100 (apo B-100), the main protein component that makes up LDL (Low density lipoprotein), consists of 4,536 amino acids and serves to combine with the LDL receptor. The oxidized LDL peptides by malondialdehyde (MDA) or acetylation in vivo act as immunoglobulin (Ig) antigens and peptide groups were classified into 7 peptide groups with subsequent 20 amino acids (P1-P302). The biomimetic peptide P143 (IALDD AKINF NEKLS QLQTY) out of C-group peptides carrying the highest value of IgG antigens were selected for structural studies that may provide antigen specificity. Experimental results show that P143 has β-sheet in Ile[1]-Asn[9] and α-helice in Gln[16]-Tyr[20] structure. Homonuclear 2D-NMR (COSY, TOCSY, NOESY) experiments were carried out for NMR signal assignments and structure determination for P143. On the basis of these completely assigned NMR spectra and proton distance information, distance geometry (DG) and molecular dynamic (MD) were carried out to determine the structures of P143. The proposed structure was selected by comparisons between experimental NOE spectra and back-calculated 2D NOE results from determined structure showing acceptable agreement. The total Root-Mean-Square-Deviation (RMSD) value of P143 obtained upon superposition of all atoms were in the set range. The solution state P143 has a mixed structure of pseudo α-helix and β-turn(Phe[10] to Glu[12]). These results are well consistent with calculated structure from experimental data of NOE spectra. Structural studies based on NMR may contribute to the prevent oxidation studies of atherosclerosis and observed conformational characteristics of apo B-100 in LDL using monoclonal antibodies.

Secondary Metabolites from Enzymatic Oxidation of Caffeic Acid with Pancreatic Lipase Inhibitory Activity (카페인산의 효소적 산화반응으로부터 췌장 지방분해효소 저해 물질의 분리)

  • Kim, Tae Hoon;Kim, Myoung Kwon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1912-1917
    • /
    • 2015
  • Pancreatic lipase is a potential therapeutic target for the treatment of diet-induced obesity in humans. As part of our continuing search for novel bioactive compounds, the convenient enzymatic transformation of caffeic acid into neolignans as well as related oxidized-products enhanced pancreatic lipase inhibitory activity. Enzymatic transformation of caffeic acid (1) using polyphenol oxidase originating from Korean pear yielded four oxidized metabolites, which were identified by different spectroscopic techniques ($^1H$,$^{13}C$ NMR, DEP/T, $^1H-^1H$ COSY, HMBC, HMQC, and NOESY). The anti-obesity efficacy of caffeic acid reactant was tested by in vitro porcine pancreatic lipase assay. All tested samples showed dose-dependent pancreatic lipase inhibitory activities. Four oxidative products including phellinsin A (2), caffeicinic acid (3), isocaffeicinic acid (4), and 7,8-erythro-caffeicin (5) were isolated and identified. The major metabolites (2~5) were evaluated for their pancreatic lipase inhibitory activity, and oxidized-products (2~3) improved potency against pancreatic lipase when compared to original caffeic acid. This result suggested that the neolignans isolated from oxidative transformation of caffeic acid might be beneficial in the treatment of obesity and relevant diseases, and the convenient enzymatic transformation by polyphenol oxidase may be a valuable method for structural modification and enhancement of activity.

Degraded Products Induced by Gamma-Irradiation of Mangiferin with Anti-Diabetic Complication Effects (감마선 조사에 의한 Mangiferin 변화물의 항당뇨합병증 활성)

  • Jeong, Gyeong Han;Kim, Tae Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1414-1418
    • /
    • 2017
  • Inhibition of advanced glycation end product (AGE) formation is a valuable therapeutic strategy for the regulation of diabetic complications. This study was conducted to identify potential therapeutic targets of anti-diabetic complications from irradiated mangiferin using AGE formation assay. Radiolytic degradation of the xanthone glucoside mangiferin by gamma-irradiation resulted in three degraded mangiferin analogues: mangiferdiol (1), mangiferinol (2), and isomangiferinol (3). Structures of the three newly generated compounds were characterized by interpretation of nuclear magnetic resonance ($^1H$, $^{13}C$ NMR, $^1H-^1H$ COSY, HSQC, HMBC, and NOESY) and mass spectroscopic data. The anti-diabetic complication of the generated mangiferin derivatives were tested using in vitro AGE formation method. Among the tested degraded products, mangiferinol (2) and isomangiferinol (3) exhibited significantly improved potency against AGE formation inhibitory activities with $IC_{50}$ values of $5.6{\pm}0.8$ and $7.6{\pm}0.9{\mu}M$, respectively. This result implies that xanthone derivatives generated from gamma-irradiated mangiferin might be beneficial for prevention of diabetic complication and related diseases.