• 제목/요약/키워드: NO and $SO_2$ removal

검색결과 284건 처리시간 0.027초

촉매 담지 코디어라이트 다공성 필터의 NOx/SOx 동시제거에 대한 연구 (Simultaneous Removal of NOx/SOx by Catalyst-loaded Cordierite Porous Filter)

  • 이시희;정구춘;김지웅;신민철;이희수
    • 분석과학
    • /
    • 제15권3호
    • /
    • pp.256-262
    • /
    • 2002
  • 평균입자크기가 200 ${\mu}m$인 코디어라이트 분말을 사용하여 다공성 필터를 제조한 후, 진공함침법으로 $V_2O_5$, CuO, $LaCoO_3$ 촉매를 담지시킨 후 NO와 $SO_2$ 기체를 촉매 담지 세라믹필터에 동시 통과시키면서 NOx/SOx의 동시제거효율을 측정하였다. 제조된 다공성 필터의 기공률은 61.6%였고, 압축강도는 12.3 MPa이었으며, 면속도 5 cm/sec에서의 차압은 147 Pa이었다. NO와 $SO_2$의 동시제거효율을 분석해 본 결과, 페로브스카이트계 $LaCoO_3$ 촉매의 동시제거효율이 가장 우수함을 확인하였으며, $LaCoO_3$ 촉매의 NO에 대한 제거효율은 90% 이상, $SO_2$에 대해서는 80% 이상이었다.

코로나 방전에 의한 NOx, $So_2$동시제거에서 첨가제의 영향 (Effect of an Additives on Simultaneous Removal of NOx, $So_2$by Corona Discharge)

  • 박재윤;고용술;이재동;손성도;박상현
    • 한국전기전자재료학회논문지
    • /
    • 제13권5호
    • /
    • pp.451-457
    • /
    • 2000
  • Experimental investigations on the effect of two kinds of additives ; aqueous NaOH solution and ammonia(NH$_3$) for removal of NOx and SO$_2$ simultaneously by corona discharge were carried out. The simulated combustion flue gas was[NO(0.02[%])-SO$_2$(0.08[%])-$CO_2$-Air-$N_2$] Volume percentage of aqueous NaOH solution used was 20[%] and $N_2$flow rate was 2.5[$\ell$/min] for bubbling aqueous NaOH solution Ammonia gas(14.81[%]) balanced by argon was diluted by air. NH$_3$ molecular ratios(MR) based on [NH$_3$] and [NO+SO$_2$] were 1, 1.5 and 2.5 The vapour of aqueous NaOH solution and NH$_3$was introduced to the main simulated combustion flue gas duct through injection systems which were located at downstream of corona discharge reactor. NOx(NO+NO$_2$) removal rate by injecting the vapour of aqueous NaOH solution was much better than that by injecting NH$_3$however SO$_2$removal rate by injecting NH$_3$was much better than that by injecting the vapour of aqueous NaOH SO$_2$removal rate slightly increased with increasing applied voltage. When the vapour of aqueous NaOH solution and NH$_3$were simultaneously injection NOx and SO$_2$ removal rate were significantly increased.

  • PDF

알루미나에 의한 수용액 중의 산성이온 제거 특성 (Removal Characteristic of Acidic Ion in Aqueous Solution by Alumina)

  • 홍영호
    • 공업화학
    • /
    • 제18권5호
    • /
    • pp.454-458
    • /
    • 2007
  • 본 연구는 알루미나를 이용하여 수용액 중에 존재하는 $Ca^{2+}$, $Mg^{2+}$, $Sr^{2+}$, $SO{_4}^{2-}$, $NO{_3}^-$, $Cl^-$ 이온의 제거 특성을 분석하기 위하여 실시하였다. 알루미나는 $Al(NO_3)_3{\cdot}9H_2O$$NH_4OH$를 사용하여 합성한 수화물을 $450{\sim}750^{\circ}C$로 5 h 동안 열처리하고 FT-IR과 Brunauer-Emmett-Teller (BET)법으로 물성을 분석하였다. 실험결과에 의하면 알루미나의 비표면적은 열처리 온도가 증가하면 감소하는 특성을 나타내었다. 알루미나에 의한 흡착능은 $SO{_4}^{2-}$$NO{_3}^-$가 각각 23 mg/g와 12.4 mg/g의 값을 보였다. 반면에 $Cl^-$는 4 mg/g으로 비교적 낮은 값을 보였다. 일반적으로 음이온 제거 효율은 알루미나의 제조를 위한 열처리 온도가 증가할수록 감소하였으며, $450^{\circ}C$로 처리한 알루미나의 경우에 가장 좋은 처리 효율을 나타내었다. 양이온인 $Ca^{2+}$, $Mg^{2+}$, $Sr^{2+}$의 제거 효율은 알루미나의 열처리 온도에 비례하여 증가하는 경향을 보였다.

코로나 방전 시스템을 이용한 연소가스중의 NOx, $SO_2$제거 (Removal of NOx and $SO_2$ from Combustion Flue Gases by Corona Discharge Systems)

  • 박재윤
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권8호
    • /
    • pp.830-835
    • /
    • 1997
  • In this study an experimental investigation has been conducted to remove NOx and SO$_2$simultaneously from a combustion flue gases were consisted of NO-SO$_2$-$CO_2$-$N_2$-O$_2$([NO]o:200ppm and [SO$_2$]o:800ppm) and the injection gases used as radical source gases were NH$_3$-Ar-air and CH$_4$-Ar-air. NOx and SO$_2$removal efficiency and the other by-products were measured by Fourier Transform Infrared(FTIR) as well as SO$_2$, NOx and NO$_2$gas detectors. and SEM images after sampling. The results showed that a significant Nucleating Particle Counter(CNPC) and SEM images after sampling. The results showed that a significant aerosol particle formation was observed during a simultaneous NOx and SO$_2$removal operation in corona radical shower systems. The diameter of aerosol particles was in the range of 0.18 to 3.6${\mu}{\textrm}{m}$ with a maximum fraction of particles at particles diameter of 1${\mu}{\textrm}{m}$. The NOx removal efficiency significantly increased with increasing applied voltage and NH$_3$molecule ratio. The SO$_2$removal efficiency was not significantly effected by applied voltage and slightly increased with increasing NH$_3$molecule ratio. It could be found that it is possible to use CH$_4$for NOx and SO$_2$removal by corona radical shower systems.

  • PDF

NaOH를 이용한 배기가스의 습식 스크러빙에서 SO2 농도에 따른 NOx 제거효율 (Effect of SO2 Concentration on NOx Removal Efficiency in NaOH-Based Wet Scrubbing)

  • 강명수;황정호
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.659-667
    • /
    • 2018
  • $NO_x$ and $SO_2$ are mainly generated in the combustion of fossil fuels, and they cause secondary aerosol formation and acid rain in the atmosphere. Many studies have been conducted on the wet scrubbing process which can simultaneously reduce $NO_x$ and $SO_2$ at relatively low temperature. In this study, we conducted an experimental study on wet scrubbing by using NaOH solution. Especially, this study focuses on $NO_x$ and $SO_2$ removal characteristics by varying $NO_2/NO_x$ ratio and $SO_2$ concentration.

상온 펄스 코로나 방전 공정에 의한 NO 제거 효율 (NO Removal Efficiency by Pulsed Corona Discharge Process at Room Temperature)

  • 김동주;박정환;김교선
    • 한국대기환경학회지
    • /
    • 제18권5호
    • /
    • pp.337-344
    • /
    • 2002
  • In this study, we analyzed the NO removal efficiency by the pulsed corona discharge process and investigated the effects of several process variables such as initial concentrations of NO, $H_2O$, and NH$_3$, applied voltage, pulse frequency, diameter of the discharge electrode, and residence time. The removal efficiency of NO increased by the addition of $H_2O$ or NH$_3$, but the changes of initial NH$_3$ and $H_2O$ concentrations did not affect the removal efficiency of NO significantly. With the increases of the applied voltage or the residence time, the removal efficiency of NO increased. In addition, with the increases of the pulse frequency of applied voltage, or the diameter of the discharge electrode, the removal efficiency of NO increased. The experimental results can be used as a basis to design the pulsed corona discharge process to remove NO$_{x}$, SO$_{x}$ and VOCs.OCs.

금속파티클-AI2O3Barrier 반응기의 NOx 제거에 미치는 유전체 영향 (Effect of Dielectrics on NOx Removal of Metal Particle-AI2O3 Barrier Reactor)

  • 박재윤;김종석;고희석;김형만;배명환
    • 한국전기전자재료학회논문지
    • /
    • 제16권3호
    • /
    • pp.247-252
    • /
    • 2003
  • In this paper, we made four types of metal particle $Al_2$O$_3$ barrier reactors with and without dielectric of BaTiO$_3$ between metal particle and $Al_2$O$_3$ barrier to investigate NOx removal characteristic and the effect of dielectric on Nox removal. And Nox removal rate is measured when sludge pellets are put at down stream of plasma reactor. Nox removal rate in the reactor with $Al_2$O$_3$ barrier is much better than that in the reactor without $Al_2$O$_3$ barrier, Nox removal rate is not so good in metal particle-Al$_2$O$_3$ barrier reactor with BaTiO$_3$ between metal particle and $Al_2$O$_3$ barrier, however, Nox removal rate is about 40% in metal particle-Al$_2$O$_3$ barrier reactor with TiO$_2$. The most of NO is conversed to NO$_2$ in these kind of reactor. When sludge pellets are put at down stream of plasma reactor, Nox removal rate is greatly improved up to 90%. It indicates that sludge pellets have great effect on the NO$_2$ removal and the improvement of Nox removal rate, however, dielectric materials between metal particle and $Al_2$O$_3$ barrier have not effect. Organic materials included in sludge may react with NO$_2$ and ozone so that Nox removal rate is greatly improved.

습식 공기청정장치의 공기오염물질 제거 특성 (Characteristics of a Wet Air Cleaning System for Removal of Air Pollutants)

  • 배귀남;김용표;백남준
    • 대한환경공학회지
    • /
    • 제22권1호
    • /
    • pp.21-31
    • /
    • 2000
  • 본 연구에서는 공기청정기, 기수분리기 및 중성능 필터로 구성되는 습식 공기청정장치를 대상으로 입자와 유해가스인 $SO_2$, NO, $NO_2$, HCHO 및 $NH_3$의 제거 특성을 실험적으로 살펴보고, 실험결과를 대상물질의 물리화학적 특성과 연관시켜 검토하였다. 입자제거 실험에서는 대기 에어로졸을 송풍기를 통해 장치에 도입하여 장치의 3곳에서 2대의 레이저 입자계수기로 입자크기 분포를 측정하여 각 구성요소의 입자제거효율을 구하였다. 실험결과로부터 기수분리기에서는 입경이 $5{\mu}m$ 이상인 조대 입자가 주로 제거되고. 중성능 필터에서는 이보다 작은 미세 입자가 주로 제거됨을 알 수 있었다. 유해가스 제거 실험에서는 시험용 가스를 송풍기의 출구에 주입하여 공기청정기의 상류와 기수분리기의 하류에서 가스농도를 측정하여 유해가스 제거효율을 구하였다. 실험결과로부터 헨리상수가 큰 수용성인 $SO_2$, HCHO 및 $NH_3$는 제거효율이 높았으나, 헨리상수가 낮아 난용성인 NO와 $NO_2$는 제거효율이 낮음을 알 수 있었으며, 공기청정기에서 상당량의 음이온이 발생됨을 알았다.

  • PDF

고정원에서 배출되는 $NO_x/SO_x$의 동시제거를 위한 SCR 촉매의 제조법에 관한 연구: I. $V_2O_5-MoO_3/TiO_2$ 촉매들의 표면특성과 반응성 (Studies on the Preparation for the Simultaneous Removal of NO and $SO_2$ from Stationary Sources I.Surface properties and reactivity of $V_2O_5-MoO_3/TiO_2$ catalysts)

  • 구미화;정석진
    • 한국대기환경학회지
    • /
    • 제8권1호
    • /
    • pp.58-67
    • /
    • 1992
  • For removing $NO_x$ and $SO_x$ from the flue gases emitted from stationary sources, $V_2O_5-MoO_3/TiO_2$ catalysts were prepared by the conventional impregnation method (aqueous solution) and a sort of surface fixation method(nonaqueous solution) as reported excellent reproducibility catalysts. And these catalysts observed their catalytic activities as well as their surface properties. V-Mo-O oxide, prepared from nonaqueous solution of $VOCl_3$ and $Mo(CO)_6$ and aqeous solution method, was supported as amorphous state by XRD and SEM measurements. The infrared spectra of fresh and used catalysts showed that in used catalysts, V=O bands decreased and new bands of vanadium oxysulfate bands were very sensitive. So the catalysts prepared from nonaqueous solution may bring about the high activity. Results from catalytic activity measurements at 350$^\circ$C, in the presence of $SO_2, NO$ conversion was more increased than in absence of $SO_2$. As the $MoO_3$ was added to $V_2O_5/TiO_2 system, SO_2$ conversion increased. It found that from the results, $V_2O-5-MoO_3/TiO_2$ catalysts prepared from an nonaqueous solution may bring about the high activity for both the reaction of NO and $SO_2$ removal.

  • PDF

나노펄스 코로나 방전의 온도 변화에 따른 이산화황 및 일산화질소 제거에 관한 실험적 연구 (The Experimental Study on Removal of Sulfur Dioxide and Nitrogen Oxide Using a Nano-Pulse Corona Discharger at Different Temperatures)

  • 한방우;김학준;김용진
    • 한국대기환경학회지
    • /
    • 제27권4호
    • /
    • pp.387-394
    • /
    • 2011
  • A study on the removal of sulfur dioxide and nitrogen oxide was carried out using a non-thermal nano-pulse corona discharger at different gas temperatures. Pulse voltage with a high voltage of 50 kV, a pulse rising time of about 100 ns, a full width at half maximum of about 500 ns and a frequency of 1 kHz was applied to a wire-cylinder corona reactor. Ammonia and propylene gases were added into the corona reactor as additives with a static mixer. Ammonia addition had less effect on $SO_2$ reduction at the higher temperature because of the retardation of ammonium sulfate formation. However, propylene addition enhanced NO reduction at higher temperature due to increased gas mixture. $SO_2$ was further removed at the mixed $SO_2$ and NO gas due to increased $NO_2$ by the conversion of NO. The addition of ammonia and propylene gases was more highly dominant for the removal of sulfur dioxide compared to the sole pulse corona without the additives. However, the specific energy density per unit concentration of pulse corona as well as propylene additive was an important factor to remove NO gas. Therefore, the specific energy density per unit concentration of 0.04 Wh/($m^3{\cdot}ppm$) was necessary for the NO removal of more than 80% with the concentration ratio of 2.0 for propylene and NO. Hydrogen peroxide was another alternative additive to remove both $SO_2$ and NO in the nano-pulse corona discharger.