• Title/Summary/Keyword: NO activity

Search Result 11,360, Processing Time 0.044 seconds

Activities of Upper Limb Muscles Related to the Direction of Elastic Tape Application in Healthy Adults: A Randomized Trial of Parallel-Aligned Versus Cross-Aligned Tape Application

  • Oh, Duck-Won;Chon, Seung-Chul
    • Physical Therapy Korea
    • /
    • v.20 no.4
    • /
    • pp.9-15
    • /
    • 2013
  • The purpose of this study was to evaluate the differences in electromyographic (EMG) activities of upper limb muscles between cross- and parallel-aligned taping and to compare the effects of these 2 taping methods in healthy adults. Thirty subjects, who volunteered for this study, were tested under 3 taping conditions in random order: (1) no taping, (2) cross-aligned taping, and (3) parallel-aligned taping. EMG activities of the biceps brachii, triceps brachii, flexor carpi ulnaris, and extensor carpi radialis muscles were measured. All muscles showed significant differences in EMG activity among the 3 conditions (p<.05). In the post hoc test, biceps brachii and triceps brachii muscles showed significant differences in EMG activity between the no taping and the cross-aligned taping conditions and between the no taping and the parallel-aligned taping conditions. Additionally, the EMG activities of the flexor carpi radialis and extensor carpi radialis muscles appeared to be significantly different between the no taping and parallel-aligned taping conditions. These findings demonstrate that taping may be helpful for decreasing muscle activity, regardless of the direction of tape application. This study provides useful information to future researchers regarding the effects of taping on muscle activity.

Characteristics of Sophorolipid as an Antimicrobial Agent

  • KIM, KAPJUNG;DALSOO YOO;YOUNGBUM KIM;BAEKSEOK LEE;DOONHOON SHIN;EUN-KI KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.235-241
    • /
    • 2002
  • Sophorolipid, a biosurfactant produced from Candida bombicola ATCC 22214, showed antimicrobial activity against Bacillus subtilis, Staphylococcus xylosus, Streptococcus mutans, and Propionibacterium acne at 4, 1, 1, 0.5 ppm, respectively. Also, 100 ppm of sophorolipid inhibited $50\%$ of cell growth of plant pathogenic fungus, Botrytis cineria. However, sophorolipid showed no effect on Escherichia coli, indicating that its selective antimicrobial activity depended on the cell wall structure. Treatment of B. subtilis with sophorolipid increased leakage of intracellular enzyme, malate dehydrogenase, indicating a possible interaction of sophorolipid with a cellular membrane. Comparing lactone-type and acid-type sophorolipids, the former showed a higher antimicrobial activity. Supplementing other surfactants showed no significant effects on the antimicrobial activity. Animal study showed that 5 g of sophorolipid per kg body weight by oral administration caused no toxicity, and sophorolipid induced no irritation on the skin. These results show potential use of sophorolipid as an active ingredient in healthcare products.

Effects of $NO_3^-$ Gradients on Nitrogen Fixation, Nitrate Reduction and Ureide Content of Soybean (대두의 공소개정, 공산환원 및 Ureide함량에 미치는$NO_3^-$의 영향)

  • 추연식
    • Journal of Plant Biology
    • /
    • v.30 no.3
    • /
    • pp.205-213
    • /
    • 1987
  • Soybean, inoculated with effective Rhizobium japonicum 110, were grown by sand culture with nutrient solution containing either of 0, 1, 3, 10 or 30mM NO3-/l, and analyzed growth characteristics, NR activity, N2-fixation activity, and changes of ureide contents during the growing period. The amount of nodule formation decreased abruptly by nitrate treatment, the maximum nodule dry weight was 1.59, 1.05, 0.78, 0.09 and 0.008 g plant-1, respectively for each treatment on the 98th day. Specfic activity of N2-fixation showed the maximum rates of 140, 101, 37, 5 and 2.2 nM dw.mg-1.hr-1, respectively for each treatment in the earlier growth period. The maximum acetylene reduction activity on the 98th day after sowing was 81.5, 35.3, 14.3, 0.1 and 0.0045 $\mu$M C2H4 plant-1.hr-1, respectively for 0, 1, 3, 10 and 30 mM of NO3- gradients. Nitrate reduction activity increased along with nitrate gradients, and decreased abruptly with age. Relative abundance of ureides in plant organs was high in reproductive growth, and showed the maximum value in fully symbiotic dependent plant. Relative abundance of ureides in stem is a useful indication for the evaluation of nitrogen fixation in nodules of symbiotic plant.

  • PDF

Inhibitory Activity of Medicinal Herbs on Nitric Oxide Synthesis in Activated Macrophages

  • Lee, Hwa-Jin;Kim, Ji-Sun;Jin, Chang-Bae;Ryu, Jae-Ha
    • Natural Product Sciences
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • Nitric Oxide (NO), derived from L-arginine, is produced by two types (constitutive and inducible) of nitric oxide synthase (NOS: cNOS and iNOS). The NO produced in large amounts by the iNOS is known to be responsible for the vasodilation and hypotension observed in septic shock, cancer metastasis and inflammation. The inhibitors of iNOS, thus, may be useful candidates for the treatment of inflammatory diseases accompanied by the overproduction of NO. We prepared alcoholic extracts of herbal drugs which have been used for the treatment of inflammation in oriental medicine. We have screened the inhibitory activity of NO production in lipopolysaccharide (LPS)-activated macrophages after the treatment of these extracts. Among 82 kinds of extracts of herbal drugs, 35 extracts showed the potent inhibitory activity of NO production above 50% at the concentration of $50\;{\mu}g/mL$. The inhibitory activities of NO production were also evaluated for several solvent fractions at two different concentrations. Especially, hexane and EtOAc fractions of Alpinia officinarum, Angelica gigas, Ostericum koreanum, Saussurea lappa, Torilis japonica, and hexane fractions of Agrimonia pilosa, Machilus thunbergii, Hydrangea serrata, Magnolia obovata, Prunella vulgaris, Tussilago farfara, and EtOAC fractions of Perilla frutescence showed a significant activity at 10 and/or $25\;{\mu}g/mL$. In Western blot analysis, the hexane fractions ($5\;{\mu}g/mL$) of Magnolia obovata and Saussurea lappa, and EtOAc fractions ($20\;{\mu}g/mL$) of Hydrangea Serrata, Perilla frutescence and Torilis japonica inhibited the expression of iNOS protein in LPS-activated macrophages. These plants may be promising candidates for the study of the activity-guided purification of active compounds and might be useful for the treatment of inflammatory diseases and endotoxemia accompanying overproduction of NO.

Seaweed Fermentation and Probiotic Properties of Lactic Acid Bacteria Isolated from Korean Traditional Foods (전통식품 유래 유산균의 해조류 발효 및 Probiotic 특성)

  • Kim, Jin-Hak;Park, La-Young;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1481-1487
    • /
    • 2016
  • Lactic acid bacteria showing alginate-degrading and cellulolytic activity were isolated and identified as a starter for seaweed fermentation. A total of 331 strains of lactic acid bacteria isolated from various Korean traditional foods, such as Kimchi, Jeotgal, and Makgeolli, were examined alginate-degrading and cellulolytic activity by the plate assay method. Six strains showed strong alginate-degrading and cellulolytic activity among the isolated 331 strains. Among these six strains, four strains (strain No. 162, 164, 192, and 196) showed probiotic properties (antimicrobial activity, tolerance to simulated gastric juice, artificial bile acid, and NaCl). No. 192 strain (Gram-positive cocci, catalase negative, and homofermentative) showed the best probiotic properties among selected strains and was identified as Enterococcus faecium by 16S rRNA sequencing. Strain No. 192 (E. faecium) showed the best growth and antioxidative activity during seaweed (sea mustard and sea tangle) fermentation for 72 h at $37^{\circ}C$ among the four selected strains.

Antioxidative activity and Angiotensin Converting Enzyme Inhibitory activity of Fermented Medical Plants (DeulBit) and Its Modulatory Effects of Nitric Oxide Production (약용 식물 발효액(들빛)의 항산화, Angiotensin Converting Enzyme 저해 및 Nitric Oxide 생성 조절 효과)

  • Cho, Eun-Kyung;Gal, Sang-Wan;Choi, Young-Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • This study was aimed to investigate the contents of flavonoids and the biological activity of fermented beverage of medical plants, DeulBit (DB). 50 g of Cassia semen (Cassia tora L.), 50 g of Omija (Schisandra chinensis Baillon.), 50 g of Gugija (Lycium chinense Mill), 50g of Menthae herba, 75 g of Chrysanthemum indicum Linne, 25 g of Dioscorea batatas, 5 g of Lindera obtusiloba Blume, 150 g of Polygonatum odoratum, 25 g of Glycyrrhiza uralensis, 25 g of Acanthopanacis cortex, 100 g of green tea (Camellia sinensis), and 100 g of Laminaria japonica was fermented with sucrose ($50.0{\sim}60.0^{\circ}Brix$.) and 0.5% of deep sea water in 10 L of distilled water for six months at room temperature. Total flavonoids contents of DB was calculated to $3.4{\pm}0.5\;{\mu}g/g$ and antioxidative activity of DB was measured by using DPPH radical scavenging and SOD-like activity. DPPH radical scavenging and SOD-like activity of DB was 96% and 29% at 100% of DB, respectively. In addition, DB indicated about 88% and 66% of the xanthine oxidase and angiotensin converting enzyme inhibitory activities at 1% and 10% of DB, respectively and showed fibrinolytic activity. Nitric oxide (NO) synthesis was increased to 15 times by addition of DB. In addition, NO productions of the macrophages RAW264.7 cells stimulated with lipopolysaccharide (LPS) were reduced to 40.4% by addition of DB. These results suggested that DB is significant role for antioxidative and fibrinolytic activity, and have the strong xanthine oxidase and angiotensin converting enzyme inhibitory activities.

ABTS+ Radical, Hydroxy Radical (OH), Nitric Oxide (NO), and Ferric Ion Reducing Antioxidant Power (FRAP) Effects of Ethanol Extracts from Four Seaweed Species for Noodles (국수에 대한 4종 해조류 에탄올 추출물에 의한 ABTS+, OH 라디칼, NO 라디칼, 철 이온 환원력)

  • Cho, Kyung-Soon
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1121-1129
    • /
    • 2017
  • The authors evaluated the scavenging activities of ABTS+ radical, hydroxy radical (OH), nitric oxide (NO), and ferric ion reducing antioxidant power (FRAP) from ethanol extracts of four edible alga, Enteromorpha linza, Porphyra tenera, Sargassum fusiforme, and Undaria pinnatifida. ABTS+ scavenging activity was analyzed according to the method of Brand-Williams et al. ABTS+ scavenging activity of S. fusiforme was evaluated to 61.8% at 8.0 mg/ml. ABTS+ scavenging activity of P. tenera was evaluated to 35.7% at 8.0 mg/ml. P. tenera and U. pinnatifida showed similar inhibitions of ABTS+ scavenging activity. According to the results of the OH assay in seaweed, inhibitory activities were in the order of S. fusiforme > P. tenera > U. pinnatifida > E. linza. The results showed scavenging activity for NO in the following order of potency: S. fusiforme > P. tenera > U. pinnatifida > E. linza with concentration values of 8.0 mg/ml. The NO scavenging activities of dough, which was instant noodles mixed with S. fusiforme and 3.5% salt, were 27.2% at 8.0 mg/ml. After boiling for 5 minutes, FRAP scavenging activity of instant noodles mixed with extracts of U. pinnatifida was evaluated to 31.5% at 8.0 mg/ml. S. fusiforme showed the highest inhibition activity of ABTS+, OH, NO, and FRAP among the four algae. Thus, these findings provide evidence that P. tenera, U. Pinnatifida, S. fusiforme, and E. linza extracts could become sources of natural antioxidants.

Comparison of Triceps Surae EMG in Plantar Flexion Test of MMT at Different Knee Angles

  • Lee, Han Ki;Lee, Jun Cheol
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.40-47
    • /
    • 2018
  • This study was conducted to examine changes in the muscle activity of the triceps surae, specifically the gastrocnemius and the soleus, depending on the angle of the knee joint during the manual muscle test (MMT) of the plantar flexion of the ankle. The muscle activity of the medial and lateral heads of the gastrocnemius was statistically significantly reduced when the angle of the knee joint was $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$ compared to when the angle was $0^{\circ}$. However, there was no statistically significant difference in muscle activity at the angles of $15^{\circ}$ and $30^{\circ}$ or $45^{\circ}$. There was no statistically significant difference in the muscle activity of the soleus depending on the angle of the knee joint. The ratio of the muscle activity of the soleus to that of the triceps surae showed a statistically significant increase when the angle was $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ compared to when the angle was $0^{\circ}$. However, there was no statistically significant difference in muscle activity at the angles of $15^{\circ}$ and $30^{\circ}$ or $45^{\circ}$. When the angle of the knee joint was $15^{\circ}$ or higher during the test of the isolated soleus, the muscle activity of the gastrocnemius was reduced. These results indicate that the angle is suitable for the test of the isolated soleus, but there was no statistically significant difference in the muscle activity of the gastrocnemius when the angle was higher than $15^{\circ}$. Therefore, it can be concluded that the most suitable angle of the knee joint for the isolated MMT test of the soleus is $15^{\circ}$.

Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng

  • Tewari, Rajesh Kumar;Kim, Soohyun;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.113-122
    • /
    • 2008
  • Nitric oxide (NO) affects the growth and development of plants and also affects plant responses to various stresses. Because NO induces root differentiation, we examined whether or not it is involved in increased ROS generation. Treatments with sodium nitroprusside (SNP), an NO donor, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, and $N{\omega}-nitro-{\text\tiny{L}}-arginine$ methyl ester hydrochloride (${\text\tiny{L}}-NAME$), an NO synthase (NOS) inhibitor, revealed that NO is involved in the adventitious root growth of mountain ginseng. Supply of an NO donor, SNP, activates NADPH oxidase activity, resulting in increased generation of $O_2{^{{\cdot}-}}$, which subsequently induces growth of adventitious roots. Moreover, treatment with diphenyliodonium chloride (DPI), an NADPH oxidase inhibitor, individually or with SNP, inhibited root growth, NADPH oxidase activity, and $O_2{^{{\cdot}-}}$ anion generation. Supply of the NO donor, SNP, did not induce any notable isoforms of enzymes; it did, however, increase the activity of pre-existing bands of NADPH oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Enhanced activity of antioxidant enzymes induced by SNP supply seems to be responsible for a low level of $H_2O_2$ in the adventitious roots of mountain ginseng. It was therefore concluded that NO-induced generation of $O_2{^{{\cdot}-}}$ by NADPH oxidase seems to have a role in adventitious root growth of mountain ginseng. The possible mechanism of NO involvement in $O_2{^{{\cdot}-}}$ generation through NADPH oxidase and subsequent root growth is discussed.

Characterization of Microsomal ATPases Prepared from Tomato Roots (토마토 뿌리조직에서 분리한 마이크로솜 이온펌프의 특성)

  • Cho, Kwang-Hyun;Sakong, Jung;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.130-136
    • /
    • 1998
  • Microsomes of tomato roots were prepared and the activities of microsomal ATPases were measured in order to understand the molecular mechanisms of various ion transports. The activities of plasma membrane $H^+-ATPase$ and vacuolar $H^+-ATPase$ were evaluated to ${\sim}30%$ and ${\sim}38%$ of total microsomal ATPase activity by using their specific inhibitor, vanadate and nitrate $(NO^-_3)$, respectively. The inhibitory effects of vanadate and $NO^-_3$ were additive and the simultaneous additions of these two inhibitors decreased the total activity up to $50{\sim}70%$. The microsomal ATPase activity was regulated key pH and the maximal activity was obtained at pH 7.4. The activity of microsomal ATPase was increased by $K^+$ up to ${\sim}30%$ at the concentration of $K^+$ above 10 mM. However, the $K^+-induced$ increase in the activity was completely inhibited by the simultaneous addition of $Na^+$. To identify the ATPase activity regulated by $K^+$, the effects of specific inhibitors were measured. Vanadate and $NO^-_3$ inhibited total ATPase activity by 27% and 32% in the absence, of $K^+$ and by 27% and 40% in the presence of 120 mM $K^+$, respectively. These results suggest that $K^+$ increases the activity of $NO^-_3-sensitive$ vacuolar $H^+-ATPase$ but not that of vanadate-sensitive plasma membrane $H^+-ATPase$ since vanadate has no effect on $K^+-induced$ increase in ATPase activity. The microsomal ATPase activity was also decreased by increasing $Ca^{2+}$ concentration. Interestingly, $NO^-_3$ blocked the $Ca^{2+}-induced$ inhibition of microsomal ATPase activity; however, vanadate had no effect. These results imply that vacuolar $H^+-ATPase$ is activated by $K^+$ and inhibited by $Ca^{2+}$.

  • PDF