• Title/Summary/Keyword: NN-based Emulator

Search Result 2, Processing Time 0.017 seconds

Parameter Estimation of Solar Cells and MPP Prediction Using a NN-Emulator (태양전지의 파라미터 추정 및 NN 에뮬레이터를 이용한 MPP 예측)

  • 권봉재;김종하;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.1010-1016
    • /
    • 2004
  • In this paper, a scheme for estimating the parameters of solar cells and a NN-based emulator for predicting the maximum power point are presented. The diode model with series and shunt resistors is used to estimate parameters highly affecting its V-I characteristic curve and both a real-coded genetic algorithm and the model adjustment technique are employed. For implementing the emulator, a multi-layered neural network incorporating with the BP algorithm is used. A set of simulation works using both field data and generated data are carried out to demonstrate the effectiveness of the proposed method.

Design of a Self-tuning PID Controller for Over-damped Systems Using Neural Networks and Genetic Algorithms (신경회로망과 유전알고리즘을 이용한 과감쇠 시스템용 자기동조 PID 제어기의 설계)

  • 진강규;유성호;손영득
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2003
  • The PID controller has been widely used in industrial applications due to its simple structure and robustness. Even if it is initially well tuned, the PID controller must be retuned to maintain acceptable performance when there are system parameter changes due to the change of operation conditions. In this paper, a self-tuning control scheme which comprises a parameter estimator, a NN-based rule emulator and a PID controller is proposed, which can cope with changing environments. This method involves combining neural networks and real-coded genetic algorithms(RCGAs) with conventional approaches to provide a stable and satisfactory response. A RCGA-based parameter estimation method is first described to obtain the first-order with time delay model from over-damped high-order systems. Then, a set of optimum PID parameters are calculated based on the estimated model such that they cover the entire spectrum of system operations and an optimum tuning rule is trained with a BP-based neural network. A set of simulation works on systems with time delay are carried out to demonstrate the effectiveness of the proposed method.