• 제목/요약/키워드: NN Model

검색결과 280건 처리시간 0.023초

원발성 월경통 환자의 월경기 HRV 특성에 대한 문헌고찰 및 메타분석 (Heart Rate Variability (HRV) Characteristics of Patients with Primary Dysmenorrhea at the Menstrual Phase: A Literature Review and Meta-Analysis)

  • 조시윤;이지연
    • 대한한방부인과학회지
    • /
    • 제35권3호
    • /
    • pp.122-136
    • /
    • 2022
  • Objectives: The aim of this study is to investigate Heart Rate Variability (HRV) characteristics of patients with primary dysmenorrhea at the menstrual phase. Methods: 7 databases (Pubmed, Cochrane library, CNKI, RISS, KISS, OASIS, ScienceON) were searched for eligible studies published before 2021 December. The studies comparing HRV between patients with primary dysmenorrhea and controls were included. A random-effects model was used to evaluate differences of HRV parameters between patients with primary dysmenorrhea and controls. Results: 4 articles were included in this review based on inclusion and exclusion criteria. SDNN (Standard deviation of NN intervals), RMSSD (Square root of the mean squared difference of successive NN intervals), mean PR (Mean of pulse rate), LF (Low frequency), HF (High frequency), was the most frequently used as HRV parameters. RMSSD was significantly lower in patients with primary dysmenorrhea than controls. There was no statistically significant difference of other HRV parameters between patients with primary dysmenorrhea and controls. Conclusions: This study suggests that parasympathetic activity and overall functions of autonomic nervous system might be decreased in patients with primary dysmenorrhea at the menstrual phase. In the future, well-designed clinical studies using HRV and additional meta-analysis should be conducted to obtain a wealth of information about HRV characteristics of patients with primary dysmenorrhea.

가중치 VAE 오버샘플링(W-VAE)을 이용한 보안데이터셋 샘플링 기법 연구 (A Data Sampling Technique for Secure Dataset Using Weight VAE Oversampling(W-VAE))

  • 강한바다;이재우
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1872-1879
    • /
    • 2022
  • 최근 인공지능 기술이 발전하면서 해킹 공격을 탐지하기 위해 인공지능을 이용하려는 연구가 활발히 진행되고 있다. 하지만, 인공지능 모델 개발에 핵심인 학습데이터를 구성하는데 있어서 보안데이터가 대표적인 불균형 데이터라는 점이 큰 장애물로 인식되고 있다. 이에 본 눈문에서는 오버샘플링을 위한 데이터 추출에 딥러닝 생성 모델인 VAE를 적용하고 K-NN을 이용한 가중치 계산을 통해 클래스별 오버샘플링 개수를 설정하여 샘플링을 하는 W-VAE 오버샘플링 기법을 제안한다. 본 논문에서는 공개 네트워크 보안 데이터셋인 NSL-KDD를 통해 ROS, SMOTE, ADASYN 등 총 5가지 오버샘플링 기법을 적용하였으며 본 논문에서 제안한 오버샘플링 기법이 F1-Score 평가지표를 통해 기존 오버샘플링 기법과 비교하여 가장 효과적인 샘플링 기법임을 증명하였다.

손목 움직임 추정을 위한 Gaussian Mixture Model 기반 표면 근전도 패턴 분류 알고리즘 (A Gaussian Mixture Model Based Surface Electromyogram Pattern Classification Algorithm for Estimation of Wrist Motions)

  • 정의철;유송현;이상민;송영록
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권2호
    • /
    • pp.65-71
    • /
    • 2012
  • In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).

A New Fine-grain SMS Corpus and Its Corresponding Classifier Using Probabilistic Topic Model

  • Ma, Jialin;Zhang, Yongjun;Wang, Zhijian;Chen, Bolun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.604-625
    • /
    • 2018
  • Nowadays, SMS spam has been overflowing in many countries. In fact, the standards of filtering SMS spam are different from country to country. However, the current technologies and researches about SMS spam filtering all focus on dividing SMS message into two classes: legitimate and illegitimate. It does not conform to the actual situation and need. Furthermore, they are facing several difficulties, such as: (1) High quality and large-scale SMS spam corpus is very scarce, fine categorized SMS spam corpus is even none at all. This seriously handicaps the researchers' studies. (2) The limited length of SMS messages lead to lack of enough features. These factors seriously degrade the performance of the traditional classifiers (such as SVM, K-NN, and Bayes). In this paper, we present a new fine categorized SMS spam corpus which is unique and the largest one as far as we know. In addition, we propose a classifier, which is based on the probability topic model. The classifier can alleviate feature sparse problem in the task of SMS spam filtering. Moreover, we compare the approach with three typical classifiers on the new SMS spam corpus. The experimental results show that the proposed approach is more effective for the task of SMS spam filtering.

신경회로망과 유전알고리즘을 이용한 과감쇠 시스템용 자기동조 PID 제어기의 설계 (Design of a Self-tuning PID Controller for Over-damped Systems Using Neural Networks and Genetic Algorithms)

  • 진강규;유성호;손영득
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.24-32
    • /
    • 2003
  • The PID controller has been widely used in industrial applications due to its simple structure and robustness. Even if it is initially well tuned, the PID controller must be retuned to maintain acceptable performance when there are system parameter changes due to the change of operation conditions. In this paper, a self-tuning control scheme which comprises a parameter estimator, a NN-based rule emulator and a PID controller is proposed, which can cope with changing environments. This method involves combining neural networks and real-coded genetic algorithms(RCGAs) with conventional approaches to provide a stable and satisfactory response. A RCGA-based parameter estimation method is first described to obtain the first-order with time delay model from over-damped high-order systems. Then, a set of optimum PID parameters are calculated based on the estimated model such that they cover the entire spectrum of system operations and an optimum tuning rule is trained with a BP-based neural network. A set of simulation works on systems with time delay are carried out to demonstrate the effectiveness of the proposed method.

Deep learning-based sensor fault detection using S-Long Short Term Memory Networks

  • Li, Lili;Liu, Gang;Zhang, Liangliang;Li, Qing
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.51-65
    • /
    • 2018
  • A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.

Application of an Adaptive Autopilot Design and Stability Analysis to an Anti-Ship Missile

  • Han, Kwang-Ho;Sung, Jae-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.78-83
    • /
    • 2011
  • Traditional autopilot design requires an accurate aerodynamic model and relies on a gain schedule to account for system nonlinearities. This paper presents the control architecture applied to a dynamic model inversion at a single flight condition with an on-line neural network (NN) in order to regulate errors caused by approximate inversion. This eliminates the need for an extensive design process and accurate aerodynamic data. The simulation results using a developed full nonlinear 6 degree of freedom model are presented. This paper also presents the stability evaluation for control systems to which NNs were applied. Although feedback can accommodate uncertainty to meet system performance specifications, uncertainty can also affect the stability of the control system. The importance of robustness has long been recognized and stability margins were developed to quantify it. However, the traditional stability margin techniques based on linear control theory can not be applied to control systems upon which a representative non-linear control method, such as NNs, has been applied. This paper presents an alternative stability margin technique for NNs applied to control systems based on the system responses to an inserted gain multiplier or time delay element.

Technology Adoption of InnovViz 2.0 : A Study of Mixed-Reality Visualization and Simulation System for Innovation Strategy with UTAUT Model

  • Savetpanuvong, Phannaphatr;Tanlamai, Uthai;Lursinsap, Chidchanok;Leelaphattarakij, Pairote;Kunarittipol, Wisit;Choochaisri, Supasate
    • Journal of Information Technology Applications and Management
    • /
    • 제18권3호
    • /
    • pp.1-30
    • /
    • 2011
  • InnovVizwas designed and developed anew as avisualization and simulationtool to present innovation and strategy information. The InnovViz system employs two key types of technology, namely mixed reality (MR) and neural network (NN). An experiment was conducted to examine the usability, acceptance and possible adoption of this new system. Participants comprised 4 experts from 4 top performing entrepreneurial firms and 161 master degree students from 2 leading universities. The study used a modified UTAUT model and a cognition and perception model. The results revealed that when the InnovViz was introduced, the key drivers to adoption are Facilitating Conditions (FC) and Voluntary to Use (VOL). Adequate knowledge and sufficient resources were found to strongly affect FC construct. The expert's rating of a firm's innovation and performance was more congruent with senior students with a technology-background than with a finance and accounting-background. InnovViz was seen as providing complex information with an ease of use and usefulness for showing data and assessment. Among the three types of visuals depicted by InnovViz, experts rated their usefulness in descending order as follows: Cube, Tetrahedron and Saturn. Finally, experts found backward simulation to be slightly more useful for assessment than forward simulation.

스마트 무인기용 가스터빈 엔진의 탈설계 영역 구성품 손상 진단에 관한 연구 (A Study on Fault Detection of Off-design Performance for Smart UAV Propulsion System)

  • 공창덕;고성희;최인수;이승현;이창호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.245-249
    • /
    • 2007
  • 본 연구에서는 모델 기반(Model-Based) 성능진단에 신경회로망을 적용하였고, SIMULINK를 이용하여 PW206C 터보축 엔진의 모델링을 수행하였다. 비행 고도, 비행 마하수, 가스발생기 회전수에 따른 다양한 운용영역의 성능데이터를 base로 하여 압축기, 압축기터빈, 동력터빈의 성능 저하에 대한 학습 데이터를 획득하고 역전파(Back Propagation Network)를 이용하여 훈련 하였다. 설계점 및 탈설계 영역에서 압축기, 압축기터빈, 동력터빈의 단일 손상 탐지를 수행한 결과 손상된 구성품을 잘 탐지함을 확인할 수 있었다.

  • PDF

A novel approach to damage localisation based on bispectral analysis and neural network

  • Civera, M.;Fragonara, L. Zanotti;Surace, C.
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.669-682
    • /
    • 2017
  • The normalised version of bispectrum, the so-called bicoherence, has often proved a reliable method of damage detection on engineering applications. Indeed, higher-order spectral analysis (HOSA) has the advantage of being able to detect non-linearity in the structural dynamic response while being insensitive to ambient vibrations. Skewness in the response may be easily spotted and related to damage conditions, as the majority of common faults and cracks shows bilinear effects. The present study tries to extend the application of HOSA to damage localisation, resorting to a neural network based classification algorithm. In order to validate the approach, a non-linear finite element model of a 4-meters-long cantilever beam has been built. This model could be seen as a first generic concept of more complex structural systems, such as aircraft wings, wind turbine blades, etc. The main aim of the study is to train a Neural Network (NN) able to classify different damage locations, when fed with bispectra. These are computed using the dynamic response of the FE nonlinear model to random noise excitation.