• Title/Summary/Keyword: NMR assignment

Search Result 96, Processing Time 0.024 seconds

Backbone assignment of HMGB1 A-box and molecular interaction with Hoxc9DBD studied by paramagnetic probe

  • Choi, Ji Woong;Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.2
    • /
    • pp.17-23
    • /
    • 2021
  • High mobility group protein B1 (HMGB1) is a highly conserved, non-histone, chromatin associated nuclear protein encoded by HMGB1 gene. HMGB1 proteins may be general co-factors in Hox-mediated transcriptional activation that facilitate the access of Hox proteins to specific DNA targets. It is unclear that the exact binding interface of Hoxc9DBD and HMGB1. To identify the interface and binding affinity of Hoxc9DBD and HMGB1 A-box, the paramagnetic probe, MTSL was used in NMR titration experiment. It is attached to the N-terminal end of HMGB1 A-box by reaction with thiol groups. The backbone assignment of HMGB1 A-box was achieved with 3D NMR techinques. The 15N-labeled HMGB1 A-box was titrated with MTSL-labeled Hoxc9DBD respectively. Based on the chemical shift changes we can identify the interacting residues and further map out the binding sites on the protein structure. The NMR titration result showed that the binding interface of HMGB1 A-box is around loop-1 between helix-1 and helix-2. In addition, the additional contacts were found in N- and C-terminus. The N-terminal arm region of Hoxc9DBD is the major binding region and the loop between helix1 and helix2 is the minor binding region.

NMR peak assignment for the elucidation of the solution structure of T4 Endonuclease V

  • Im, Hoo-Kang;Hyungmi Lihm;Yu, Jun-Suk;Lee, Bong-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.183-183
    • /
    • 1996
  • Bacteriophage T4 endonuclease V initiates the repair of ultraviolet (UV)-induced pyrimidine dimer photoproducts in duplex DNA. The mechanism of DNA strand cleavage involves four sequential stens: linear diffusion along dsDNA, pyrimidine dimer-specific binding,l pyrimidine dimer-DNA glycosylase activity, and Af lyase activity. Although crystal structure is known for this enzyme, solution structure has not been yet known. In order to elucidate the solution structure of this enzyme NMR spectroscopy was used. As a basis for the NMR peak assignment of the protein, HSQC spectrum was obtained on the uniformly $\^$15/N-labeled T4 endonuclease V. Each amide peak of the spectrum were classified according to amino acid spin systems by interpreting the spectrum of $\^$15/N amino acid-specific labeled T4 endonuclease V. The assignment was mainly obtained from three-dimensional NMR spectra such as 3D NOESY-HMQC, 3D TOCSY-HMQC. These experiments were carried out will uniformly $\^$15/N-labeled sample. In order to assign tile resonance of backbon atom, triple-resonance theree-dimensional NMR experiments were also performed using double labeled($\^$15/N$\^$13/C) sample. 3D HNCA, HN(CO)CA, HNCO, HN(CA)HA spectra were recorded for this purpose. The results of assignments were used to interpret the interaction of this enzyme with DNA. HSQC spectrum was obtained for T4 endonuclease V with specific $\^$15/N-labeled amino acids that have been known for important residue in catalysis. By comparing the spectrum of enzyme*DNA complex with that of the enzyme, we could confirm the important role of some residues of Thr, Arg, Tyr in activity. The results of assignments were also used to predict the secondary structure by chemical shift index (CSI).

  • PDF

Prolyl Endopeptidase-inhibiting Isoflavonoids from Puerariae Flos and Some Revision of their $^{13}C-NMR$ Assignment (갈화의 Prolyl Endopeptidase 저해 활성 Isoflavonoid 및 이들의 $^{13}C-NMR$ Assignment)

  • Kim, Kyung-Bum;Kim, Sang-In;Kim, Jong-Sik;Song, Kyung-Sik
    • Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.351-355
    • /
    • 1999
  • In order to find anti-dementia drugs from natural products, prolyl endopeptidase inhibitors were purified from Puerariae Flos by consecutive solvent partition, followed by silica gel, Sephadex LH-20, and HPLC. Four isoflavonoid inhibitors were isolated and identified as tectorigenin, genistein, 5,7-dihydroxy-4',6-dimethoxyisoflavone, and 5-hydroxy-6,7,4'-trimethoxyisoflavone by means of instrumental analyses including $^{1}H-$, $^{13}C-$, $^{2}D-NMR$ and MS and $IC_{50}$ values against PEP were 5.30 ppm$(17.7\;{\mu}M)$, 10.39 ppm$(38.5\;{\mu}M)$, 13.92 ppm$(44.3\;{\mu}M)$, and 20.61 ppm$(62.8\;{\mu}M)$, respectively. Some previous mistakes in $^{13}C-NMR$ assignment were revised by careful investigation of HMBC and HMQC data.

  • PDF

NMR Spectral Analysis of Steroids Isolated from the Sponge Penares incrustans (핵자기공명분광기를 이용한 해면동물 Penares incrustans에서 분리된 스테로이드 화합물의 분석)

  • 서영완
    • Journal of Aquaculture
    • /
    • v.15 no.3
    • /
    • pp.139-143
    • /
    • 2002
  • Saringosterols have been isolated from the sponge Penares incrustans. The structure of these compounds have been determined by extensive 2-D NMR experiments such as $ ^1 H$ COSY, HMQC, and HMBC and by comparison with published data. Assignment for carbons of saringosterols for the first time has been done.

Backbone assignment of the anticodon binding domain of human Glycyl-tRNA synthetase

  • Mushtaq, Ameeq Ul;Cho, Hye Young;Byun, Youngjoo;Jeon, Young Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.50-55
    • /
    • 2016
  • Backbone $^1H$, $^{13}C$ and $^{15}N$ resonance assignments are presented for the anticodon binding domain (residues 557-674) of human glycyl-tRNA synthetase (GRS). Role of the anticodon binding domain (ABD) of GRS as an anticancer ligand has recently been reported and its role in other diseases like Charcot-Marie-Tooth (CMT) and polymyositis have increased its interest. NMR assignments were completed using the isotope [$^{13}C/^{15}N$]-enriched protein and chemical shifts based secondary structure analysis with TALOS+ demonstrate similar secondary structure as reported in X-ray structure PDB 2ZT8, except some C-terminal residues. NMR signals from the N-terminal residues 557 to 571 and 590 to 614 showed very weak or no signals exhibiting dynamics or conformational exchange in NMR timescale.

Assignment of ¹H and $^{13}C$ Nuclear Magnetic Resonances of Ganglioside $G_{A1}$

  • 이경익;전길자;류경임;방은정;최병석;김양미
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.864-869
    • /
    • 1995
  • Investigation of the structures of the gangliosides has proven to be very important in the understanding of their biological roles such as regulation of differentiation and growth of cells. We used nuclear magnetic resonance spectros-copy in order to investigate the structure of GA1. In order to do this, the assignment of spectra is a prerequisite. Since GA1 does not have polar sialic acid, the spectral overlap is severe. In order to solve this problem, we use 2D NMR spectroscopy and heteronuclear 1H/13C correlated spectroscopy in this study. Here, we report the complete assignment of the proton and the carbon spectra of the GA1 in DMSO-d6-D20 (98:2, v/v). These assignments will be useful for interpreting 1H and 13C NMR data from uncharacterized oligosaccharides and for determining the linkage position, the number of sugar rings, and the sequence of new ganglioside. Amide proton in ring Ⅲ shows many interring nOes and has intramolecular hydrogen bonding. This appears to be an important factor in tertiary folding of GA1. Based on this assignment, determination of three dimensional structure of GA1 will be carried out. Studies on the conformational properties of GA1 may lead to a better understanding of the molecular basis of its functions.