• Title/Summary/Keyword: NMDA excitotoxicity

Search Result 31, Processing Time 0.026 seconds

Neuroprotective Effects of Lithium on NMDA-induced Excitotoxicity in Mouse Cerebrum

  • Kwon, Gee-Youn;Kim, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.111-121
    • /
    • 2006
  • Neuroprotective properties of lithium were evaluated by using in vivo NMDA excitotoxicity model. Systemic injection of NMDA to young mice induced neuronal apoptosis mediated by both TNFR-l and Fas ligand, and long-term lithium treatment showed noticeable neuroprotection against NMDA-induced excitotoxicity: NMDA-damaged neurons expressed several apoptosis-related gene products such as TNFR-l, Fas ligand, and caspase-3, and these gene expressions were not found in the brain of mice chronically treated with lithium. Therefore, it is highly likely that the protection offered by chronic lithium treatment occurred at far upstream of caspase activation, since the chronic lithium treatment increased the expression of Bcl-2, an important antiapoptotic gene known to act upstream of caspase cascade. Timm's histochemistry indicated the complete blockade of the NMDA insults by the treatment. There was no indication of axonal regeneration, which follows synaptic degeneration induced by neuronal damage. Furthermore, this study reports for the first time that TNFR-l and Fas ligand are involved in neuroprotective effects of lithium in NMDA-induced neuronal apoptosis.

Neuroprotective Effects of Methanol Extract of Sophorae Subprostratae Radix on Glutamate Excitotoxicity in PC12 Cells and Organotypic Hippocampal Slice Cultures

  • Kim, Soo-Man;Shim, Eun-Sheb;Kim, Bum-Hoi;Sohn, Young-Joo;Kim, Sung-Hoon;Jung, Hyuk-Sang;Sohn, Nak-Won
    • The Journal of Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.29-40
    • /
    • 2008
  • Objectives : It has been reported that Sophorae Subprostratae Radix (SSR) has a neuroprotective effect on cerebral ischemia in animals. In the present study, the authors investigated the neuroprotective effect of SSR on glutamate excitotoxicity. Glutamate excitotoxicity was induced by using NMDA, AMPA, and KA in PC12 cells and in organotypic hippocampal slice cultures. Methods :Methanolic extract of SSR was added at 0.5, 5, and 50 ${\mu}$g/ml to culture media for 24 hours. The effects of SSR were evaluated by measuring of cell viability, PI-stained neuronal cell death, TUNEL-positive cells, and MAP-2 immunoreactivity. Results : SSR increased PC12 cell viabilities significantly against AMPA-induced excitotoxicity, but not against NMDA-induced or KA-induced excitotoxicity. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in the CA1, CA3, and DG hippocampal regions and reduced TUNEL-positive cells significantly in CA1 and DG regions. In organotypic hippocampal slice cultures damaged by AMPA-induced excitotoxicity, SSR attenuated neuronal cell death and reduced TUNEL-positive cell numbers significantly in the CA1 and DG regions. In organotypic hippocampal slice cultures damaged by KA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in CA3, but did not reduce TUNEL-positive cell numbers in CA1, CA3 or DG. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated pyramidal neuron neurite retraction and degeneration in CA1. Conclusions : These results suggest that the neuroprotective effects of SSR are related to antagonistic effects on the NMDA and AMPA receptors of neuronal cells damaged by excitotoxicity and ischemia.

  • PDF

Neuroprotection of Lithium is Associated with Inhibition of Bax Expression and Caspase 8 Activation

  • Kwon, Gee-Youn;Kim, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.389-396
    • /
    • 2001
  • Neuroprotective properties of lithium were investigated by using in vivo NMDA excitotoxicity model. The appearance of TUNEL positive cells was prominent within 24 h of NMDA (70 mg/kg, i.p.) injection in the regions of the cortex, hippocampal formation, and thalamus of mouse cerebrum. NMDA treatment resulted in the extensive enhancement of Bax immunoreactivity in the cortical and hippocampal regions. NMDA also increased the immunoreactivity of caspase 8 in the similar regions of the mouse cerebrum. However, the increased immunoreactivity of Bax and caspase 8 were dramatically attenuated by chronic lithium pretreatment (lithium chloride, 300 mg/kg/d, i.p. for $7{\sim}10$ days). At the same time, lithium ion blocked the appearance of TUNEL positive cells, and the morphological assessment indicated an effective neuroprotection by lithium against NMDA excitotoxicity. Although the exact action mechanism of lithium is not straightforward at this time, we propose that the inhibition of Bax and caspase cascade is involved in the neuroprotective action of lithium.

  • PDF

Effects of Placing Micro-Implants of Melatonin in Striatum on Oxidiative Stress and Neuronal Damage Mediated by N-Methyl-D-Aspartate (NMDA) and Non-NMDA Receptors

  • Kim, Hwa-Jung;Kwon, Jin-Suk
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 1999
  • Overstimulation of both kainate (KA) and N-methyl-D-aspartate (NMDA) receptors has been reported to induce excitatoxicity which can be characterized by neuronal damage and formation of reactive oxygen free radicals. Neuroprotective effect of melatonin against KA-induced excitotoxicity have been documented in vitro and in vivo. It is, however, not clear whether melationin is also neuroportective against excitotoxicity mediated by NMDA receptors. In the present work, we tested the in vivo protective effects of striatally infused melatonin against the oxidative stress and neuronal damage induced by the injection of KA and NMDA receptors into the rat striatum. Melatonin implants consisting of 22-gauge stainless-steel cannule with melatonin fused inside the tip were placed bilaterally in the rat brain one week prior to intrastriatal injection of glutamate receptor subtype agonists. Melatonin showed protective effects against the elevation of lipid peroxidation induced by either KA or NMDA and recovered Cu, Zn-superoxide dismutase activities reduced by both KA and NMDA into the control level. Melatonin also clearly blocked both KA- and NMDA-receptor mediated neuronal damage assessed by the determination of choline acetyltransferase activity in striatal monogenages and by microscopic observation of rat brain section stained with cresyl violet. The protective effects of melatonin are comparable to those of DNQX and MK801 which are the KA- and NMDA-receptor antagonist, respectively. It is suggested that melatonin could protect against striatal oxidative damages mediated by glutamate receptors, both non-NMDA and NMDA receptors.

  • PDF

Low Non-NMDA Receptor Current Density as Possible Protection Mechanism from Neurotoxicity of Circulating Glutamate on Subfornical Organ Neurons in Rats

  • Chong, Wonee;Kim, Seong Nam;Han, Seong Kyu;Lee, So Yeong;Ryu, Pan Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.177-181
    • /
    • 2015
  • The subfornical organ (SFO) is one of circumventricular organs characterized by the lack of a normal blood brain barrier. The SFO neurons are exposed to circulating glutamate ($60{\sim}100{\mu}M$), which may cause excitotoxicity in the central nervous system. However, it remains unclear how SFO neurons are protected from excitotoxicity caused by circulating glutamate. In this study, we compared the glutamate-induced whole cell currents in SFO neurons to those in hippocampal CA1 neurons using the patch clamp technique in brain slice. Glutamate ($100{\mu}M$) induced an inward current in both SFO and hippocampal CA1 neurons. The density of glutamate-induced current in SFO neurons was significantly smaller than that in hippocampal CA1 neurons (0.55 vs. 2.07 pA/pF, p<0.05). To further identify the subtype of the glutamate receptors involved, the whole cell currents induced by selective agonists were then compared. The current densities induced by AMPA (0.45 pA/pF) and kainate (0.83 pA/pF), non-NMDA glutamate receptor agonists in SFO neurons were also smaller than those in hippocampal CA1 neurons (2.44 pA/pF for AMPA, p<0.05; 2.34 pA/pF for kainate, p< 0.05). However, the current density by NMDA in SFO neurons was not significantly different from that of hippocampal CA1 neurons (1.58 vs. 1.47 pA/pF, p>0.05). These results demonstrate that glutamate-mediated action through non-NMDA glutamate receptors in SFO neurons is smaller than that of hippocampal CA1 neurons, suggesting a possible protection mechanism from excitotoxicity by circulating glutamate in SFO neurons.

Effects of Spermine on Quisqualate-induced Excitotoxicity in Rat Immature Cortical Neurons (흰쥐 미숙 대뇌피질 신경세포에서 Quisqualate로 유발된 흥분성 세포독성에 대한 spermine의 영향)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.535-540
    • /
    • 1999
  • Glutamate (Glu) receptor-mediated excitoxicity has been implicated in many acute and chronic types of neurological disorders. Exposure of mature rat cortical neurons (15-18 days in culture) to the various concentrations of Glu resulted in a marked neuronal death, whereas immature rat cortical neurons (4∼5 days in culture) were resistant to the Glu-induced toxicity. Glu receptor subtype-specific agonists showed differential extent of toxicity in the immature neurons. The neurons treated with NMDA or kainate (KA) did not exhibit damage. However, quisqualate (QA) treatment induced a considerable cell death (36.1%) in immature enurons. The non-NMDA antagonist DNQX did not reduce this response. Interestingly, the QA-induced toxicity was potentiated by spermine in a concentration-dependent manner. Again, the spermine-enhanced damage was not altered by the polyamine antagonist ifenprodil. Taken together, unlike NMDA or KA, QA can induce neurotoxicity in immature rat cortical neurons and the QA-induced toxicity was potentiated by spermine. The lack of antagonizing effects of DNQX and ifenprodil on QA-induced toxicity and the potentiated toxicity by spermine, respectively, implies that both QA receptor and the polyamine site of NMDA receptor may not mediate the neurotoxicity observed in this study, and that a distinct mechanism(s) may be involved in excitotoxicity in immature neurons.

  • PDF

Development of New NMDA Receptor Agonists/Antagonists

  • Park, No-Sang
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.72-74
    • /
    • 2003
  • Excitatory amino acid (EAA) receptor, particularly NMDA receptor, are now known to be one of major transmitter receptors involved in synaptic excitation. Excessive release of EAA neurotransmitter, glutamate, is an important causative factor in the neurodegenerative processes and can cause neuronal damage and cell death. This excitotoxicity has been shown to be $Ca^{++}$ dependent. (omitted)

  • PDF

Histological changes in brain tissue of rat induced neuronal excitotoxicity by NMDA(N-methyl-D-asparate) (NMDA(N-methyl-D-asparate)의 투여에 의해 유발된 신경 과흥분상태에서의 쥐의 뇌조직 변화)

  • Song, Jae-chan
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.2
    • /
    • pp.290-296
    • /
    • 1998
  • Histological changes was investigated in the 4 weeks old rat brain using NMDA (N-methyl-D-asparate) which is capable of mediating excitotoxic events. The changes were occured when the injected NMDA solved in PBS was over $1.0{\mu}g/g$(about 90nM). The necrosis of Purkinje cells in cerebellum and the increasement of coloidal plexus cell number were prevalent. The Purkinje cell number of necrosis were increased according to increasement of amount of injected NMDA. In spite of increasement of degenerated Purkinje cell number, differentiation of new Purkinje cell was not identified because total number of Purkinje cell was not changed. The change of cell number was observed in coloidal plexus cell rather than degeneration of cell. About 5 time increasement was occured. This change may cause increasement of cerebrospinal fluid and the makes mophorogy of brain more round than nomal.

  • PDF

Endogenous glutamate enhances survival rates of neurons via activating mitochondrial signalings in hippocampal neuron (미토콘드리아 기능을 통해 내인성 글루탐산이 신경세포 생존에 미치는 영향)

  • Noh, Jin-Woo;Kim, Hye-Ji;Eun, Su-Yong;Kang, Moon-Suk;Jung, Sung-Cherl;Yang, Yoon-Sil
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.67-71
    • /
    • 2018
  • Neuronal excitotoxicity induces mitochondrial dysfunction and the release of proapoptotic proteins. Excitotoxicity, the process by which the overactivation of excitatory neurotransmitter receptors leads to neuronal cell death. Neuronal death by excitotoxicity was related to neuronal degenerative disorders and hypoxia, results from excessive exposure to excitatory neurotransmitters, such as glutamate. Glutamate acts at NMDA receptors in cultured neurons to increase the intracellular free calcium concentration. Therefore endogenous glutamate may be a key factor to regulate neuronal cell death via activating $Ca^{2+}$ signaling. For this issue, we tested some conditions to alter intracellular $Ca^{2+}$ level in dissociated hippocampal neurons of rats. Cultured hippocampal neuron were treated by KCl (20 mM), $CaCl_2$ (3.8 mM) and glutamate ($5{\mu}M$) for 24 hrs. Interestingly, The Optical Density of hippocampal neurons was increased by high KCl application in MTT assay data. This enhanced response by high KCl was dependent on synaptic $Ca^{2+}$ influx but not on intracellular $Ca^{2+}$ level. However, the number of neurons seemed to be not changed in Hoechst 33342 staining data. These results suggest that enhancement of synaptic activity plays a key role to increase mitochondrial signaling in hippocampal neurons.

Resveratrol Ameliorates NMDA-induced Mitochondrial Injury by Enhanced Expression of Heme Oxygenase-1 in HT-22 Neuronal Cells (NMDA를 처리한 HT-22 신경세포에서 미토콘드리아 손상을 완화하는 레스베라트롤의 보호 효과와 헴 산화효소-1의 역할)

  • Kang, Jae Hoon;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • N-methyl-D-aspartate (NMDA) receptors have received considerable attention regarding their involvement in glutamate-induced neuronal excitotoxicity. Resveratrol has been shown to exhibit neuroprotective effects against this kind of overactivation, but the underlying cellular mechanisms are not yet clearly understood. In this study, HT-22 neuronal cells were treated with NMDA in Mg2+-free buffer and subsequently used as an experimental model of glutamate excitotoxicity to elucidate the mechanisms of resveratrol-induced neuroprotection. We found that NMDA treatment causes a drop in MTT reduction ability, disrupts inside-negative transmembrane potential of mitochondria, depletes cellular ATP levels, and stimulates intracellular ROS production. Double fluorescence imaging studies demonstrated an increased formation of mitochondrial permeability transition (MPT) pores accompanied by apoptotic cell death, while cobalt protoporphyrin and bilirubin showed protective effects against NMDA-induced mitochondrial injury. On the other hand, zinc protoporphyrin IX significantly attenuated the protective effects of resveratrol which was itself shown to enhance heme oxygenase-1 (HO-1) mRNA and protein expression levels. In cells transfected with HO-1 small interfering RNA, resveratrol failed to suppress the NMDA-induced effects on MTT reduction ability and MPT pore formation. The present study suggests that resveratrol may prevent mitochondrial injury in NMDA- treated HT-22 cells and that enhanced expression of HO-1 is involved in the underlying cellular mechanism.