• Title/Summary/Keyword: NLOS environment

Search Result 67, Processing Time 0.023 seconds

Analysis of TDOA and TDOA/SS Based Geolocation Techniques in a Non-Line-of-Sight Environment

  • Huang, Jiyan;Wan, Qun
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.533-539
    • /
    • 2012
  • The performance analysis of wireless geolocation in a non-line-of-sight (NLOS) environment is a very important issue. Since Cramer-Rao lower bound (CRLB) determines the physical impossibility of the variance of an unbiased estimator being less than the bound, many studies presented the performance analysis in terms of CRLB. Several CRLBs for time-of-arrival (TOA), pseudo-range TOA, angle-of-arrival (AOA), and signal strength (SS) based positioning methods have been derived for NLOS environment. However, the performance analysis of time difference of arrival (TDOA) and TDOA/SS based geolocation techniques in a NLOS environment is still an opening issue. This paper derives the CRLBs of TDOA and TDOA/SS based positioning methods for NLOS environment. In addition, theoretical analysis proves that the derived CRLB for TDOA is the same as that of pseudo-range TOA and the TDOA/SS scheme has a lower CRLB than the TDOA (or SS) scheme.

Time Delay Traceback Scheme for Performance Enhancement of TDOA Location Estimation in NLOS Environment (NLOS 환경에서 TDOA 위치 추정 성능 향상을 위한 시간 지연 역추적 기법)

  • Lee, Hyun-Jae;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.297-306
    • /
    • 2012
  • In this paper, we propose a Time Delay Traceback Scheme for the TDOA location estimation performance enhancement in NLOS environment and analyze the performance in various conditions. We place multiple readers in a square($300m{\times}300m$) searching area for reuse of received signal. Also, we use more active NLOS reader detection methode for NLOS error mitigation. when NLOS time delay 70 m, the number of the NLOS reader is 3 and the received sub-blinks number 3, proposed time delay trace-back scheme improve the RMSE about 16 m. From these results, we confirm that the proposed time delay traceback scheme is well-suited for the high precision location estimation to offer the location based service.

High Accuracy Indoor Location Sensing Solution based on EMA filter with Adaptive Signal Model in NLOS indoor environment (NLOS 실내 환경 하에서 측위 정확도 개선을 위한 EMA 필터 적용 적응적 신호 모델 기반 위치 센싱 솔루션)

  • Ha, Kyunguk;Cha, Myeonghun;Kim, Dongwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.852-860
    • /
    • 2019
  • In this paper, we proposed a new trilateration technique based on exponential moving average (EMA) filter with adaptive signal model which enhances accuracy of positioning system even if the RSSI changes randomly due to movement of obstacles or blind node in indoor environment. In the proposed scheme, three fixed transmitters sent out the signal to blind node. The transmitter decides the location of the blind node based on RSSI and it estimates the cause of RSSI fluctuation which is interference of obstacle or movement of blind node. When the path between blind node and transmitter has become NLOS path because of obstacles, the transmitter ignores the measured RSSI in NLOS path and replace estimated RSSI in LOS environment. In the other case, the transmitter updated the new RSSI to represent of movement of blind node. The proposed scheme has been verified on a ZigBee testbed and we proved the improved positioning accuracy compared to the existing indoor position system.

Location Information Reliability-Based Precision Locating System Using NLOS Condition Estimation (NLOS 상태 추정을 이용한 위치 정보 신뢰성 기반의 정밀 위치 측정 시스템)

  • Son, Sanghyun;Choi, Hoon;Cho, Hyuntae;Baek, Yunju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.97-108
    • /
    • 2013
  • Recently, mobile devices were increased and there was a sharp rise in demand. To exploit the location information of each device, many researcher was studying locating systems. The favorite locating or positioning systems were a GPS using satellites and a RTLS using wireless communication between devices. If some obstacle existed nearby the target device, The system have difference of performance. The obstacles near targets were caused signal disconnection and reflection because of NLOS condition. As the result, the NLOS condition degrade the locating performance. In this paper, we propose a locating system which is cooperated two systems using information reliability estimates from LOS/NLOS condition. We developed proposed system. In addition, we performed fields test and simulation tests at various environment for performance evaluation. As the result, the test showed 97% success rate to estimate NLOS condition. Furthermore, the simulation result of our locating system was increased to 89% compared with a single system.

Implementation of Indoor Location Tracking System Using ETOA Algorithm in Non-Line-Of-Sight Environment (비가시선(NLOS) 환경에서 ETOA알고리즘을 이용한 실내 위치 추적 시스템 구현)

  • Kang, Kyeung-Sik;Choi, Goang-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.300-308
    • /
    • 2012
  • Many indoor location tracking technologies have been proposed. Generally indoor location tracking using TOA signal is used, there is a weak point that it's difficult to track the location due to obstacles like a refraction, reflection and dispersion of radio wave. In this paper, we apply ETOA(Estimated-TOA) algorithm in NLOS(Non-Line-Of-Sight) environment to solve above problem. In NLOS environment, TOA value between Beacon and Mobile node is predicted by ETOA algorithm and the tracking of indoor location is also possible to identify using two NLOS beacons of three beacons by this algorithm. We show that the proposed algorithm is accurate location tracking is accomplished using the applying the proposed algorithm to indoor moving robot and the inertia sensor of robot and Kalman filter algorithm.

IEEE 802.15.4a based Localization Algorithm for Location Accuracy Enhancement in the NLOS Environment (실내 NLOS환경에서 정밀도 향상을 위한 IEEE 802.15.4a 기반의 위치추정 알고리즘)

  • Cha, Jae-Young;Kong, Young-Bae;Choi, Jeung-Won;Ko, Jong-Hwan;Kwon, Young-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1789-1798
    • /
    • 2012
  • IEEE 802.15.4a standard can provide a variety of location-based services for ZigBee or wireless network applications by adapting the time-of-arrival (TOA) ranging technique. The non-line-of-sight (NLOS) condition is the critical problem in the IEEE 802.15.4a networks, and it can significantly degrade the performance of the TOA-based localization. To enhance the location accuracy due to the NLOS problem, this paper proposes an energy-efficient low complexity localization algorithm. The proposed approach performs the ranging with the multicast method, which can reduce the message overhead due to packet exchanges. By limiting the search region for the location of the node, the proposed approach can enhance the location accuracy. Experimental results show that the proposed algorithm outperforms previous algorithms in terms of the energy consumption and the localization accuracy.

The Compensation Algorithm for Localization Using the Least-Squares Method in NLOS Environment (NLOS환경에서의 최소자승법을 적용한 위치인식 보정 알고리즘)

  • Jung, Moo-Kyung;Choi, Chang-Yong;Lee, Dong-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.309-316
    • /
    • 2012
  • The compensation algorithm for localization using the least-squires method in NLOS(Non Line of Sight) environment is suggested and the performance of the algorithm is analyzed in this paper. In order to improve the localization correction rate of the moving node, 1) the distance value of the moving node that is moving as an constant speed is measured by SDS-TWR(Symmetric Double-Sided Two-Way Ranging); 2) the location of the moving node is measured using the triangulation scheme; 3) the location of the moving node measured in 2) is compensated using the least-squares method. By the experiments in NLOS environment, it is confirmed that the average localization error rates are measured to ${\pm}1m$, ${\pm}0.2m$ and ${\pm}0.1m$ by the triangulation scheme, the Kalman filter and the least-squires method respectively. As a result, we can see that the localization error rate of the suggested algorithm is higher than that of the triangulation as average 86.0% and the Kalman filter as average 16.0% respectively.

Measurement of LPWA communication coverage in NLOS environment (NLOS 환경에서 LPWA 통신 커버리지 측정)

  • Kwon, Hyuk;Jin, Kyoung-Bog;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.591-593
    • /
    • 2019
  • LPWA has a small amount of data that can be transmitted at one time, but it can collect a very wide range of information, so it is suitable for gathering information of apartment meter or collecting data intermittently sent from industrial site. However, most of the application studies on LPWA are limited to outdoor, especially LOS environment, so it is difficult to collect information for application to apartment and industrial sites. In this paper, we have measured the communication coverage within the building, which is a NLOS environment, so that LPWA communication can be applied to apartments and industrial sites. For the experiment, LoRa module was created using sx1276, Class A was applied, and the spread factor was changed for each layer. As a result, in case of spreading factor 7 that shows increasing error and losses from the 7 floor, but the in case of spreading factor 12, the data could be seamlessly received even on the 9th floor without error and losses.

  • PDF

LOS and NLOS Path-loss Characteristics at 3.4, 5.3, and 6.4 ㎓ in an Urban Environment (3.4, 5.3, 6.4 ㎓ 대역 신호의 가시 및 비가시 구간에서의 경로손실 특성)

  • 조한신;박병성;육종관;박한규;이정수
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.127-131
    • /
    • 2002
  • This paper presents the a measured path-loss characteristics in urban line-of-sight(LOS) and non line-of-sight(NLOS) environments for 3.4, 5.3, and 6.4 ㎓ band signals. A two-ray model is applied to analyse the path-loss characteristics in LOS areas. In LOS areas, an empirical break point, whose distance is shorter than a theorical break point, is founded. Further, a sudden power level drop occurs at a transition point from LOS region to NLOS area and different path-loss exponents are occured various cases. The power level drop due to comer loss and path-loss exponents both increase as the distance between the transmitter and the corner increases.

  • PDF

Design and Implementation of RF based locating System for NLOS Environment (비가시성을 고려한 RF 기반 측위 시스템의 설계 및 구현)

  • Choi, Hoon;Baek, Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7A
    • /
    • pp.654-661
    • /
    • 2011
  • RTLS (Real-time locating systems) are used for tracking the location of people or assets in real time. In this system, RTLS readers continuously communicate with RTLS tags for measuring time or ranges and location engine tries to calculate accurate location of tags. However, when we attempt to apply this system to real world, the non-line-of-sight(NLOS) problem can be critical to the system performance because of the obstacles. In this paper, we suggest a new location estimation method for an NLOS environment using a reader-selection strategy. We have implemented all components of the locating system and carried out experiments in a test-bed. The accuracy of the system is 50% better than that of the existing general locating system.