• Title/Summary/Keyword: NHOK

Search Result 7, Processing Time 0.024 seconds

MicroRNA Analysis in Normal Human Oral Keratinocytes and YD-38 Human Oral Cancer Cells

  • Kim, Hye-Ryun;Park, Eu-Teum;Cho, Kwang-Hee;Kim, Do-Kyung
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.179-185
    • /
    • 2011
  • MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional level by degrading or repressing targeted mRNAs. These molecules are about 21-25 nucleotides in length and exert their effects by binding to partially complementary sites in mRNAs, predominantly in the 3'-untranslated region (3'-UTR). Recent evidence has demonstrated that miRNAs can function as oncogenes or tumor suppressors through the modulation of multiple oncogenic cellular processes in cancer development, including initiation, cell proliferation, apoptosis, invasion and metastasis. In our present study, we examined the expression profile of miRNAs related to oral cancer cell growth inhibition using normal human oral keratinocytes (NHOK) and YD-38 human oral cancer cells. By miRNA microassay analysis, 40 and 31 miRNAs among the 1,769 examined were found to be up- and down-regulated in YD-38 cells compared with NHOK cells, respectively. Using qRT-PCR analysis, the expression levels of miR-30a and miR-1246 were found to be increased in YD-38 cells compared with NHOK cells, whereas miR-203 and miR-125a were observed to be decreased. Importantly, the overexpression of miR-203 and miR-125a significantly inhibited the growth of YD-38 cells. This finding and the microarray data indicate the involvement of specific miRNAs in the development and progression of oral cancer.

THE EFFECT OF DIFFERENTIAL MODULATION OF N-METHYL-D-ASPART ATE RECEPTOR ON THE VIABILITY OF PRIMARY CULTURED NORMAL HUMAN ORAL KERATINOCYTES (N-methyl-D-aspartate 수용기의 다양한 조절이 일차 배양된 정상사람구강각화세포의 생존에 미치는 영향)

  • Kim, In-Soo;Lee, Won;Kim, Seong-Hun;Choi, Bohm
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.4
    • /
    • pp.277-286
    • /
    • 2006
  • In the present study, I investigated the effects of N-methyl-D-aspartate (NMDA), arachidonic acid (AA), and Nitric Oxide Synthase Inhibitor (NOS-I), alone or in combination, on the viability of cultured primary normal human oral keratinocytes (NHOK). Specifically, we examined whether AA and NOS-I could protect primary NHOK from glutamate cytotoxicity. The purpose of this study was therefore the preliminary study for the examination of the interaction between these agents and NHOK in order to elucidate the mechanisms by which epithelial growth and regeneration are regulated. NHOK were obtained from gingival tissue of 20 individuals aged 20 to 29, and third passage (P3) cells were used for this study. Cell viability was measured by the MTT assay. NMDA and NNA, a calcium dependent NOS inhibitor, induced an initial increase in cell number, which subsequently decreased by the $7^{th}$ day. Low concentration of AA ($0.5\;{\mu}M$ & $1\;{\mu}M$) induced an increase in cell number while high concentrations of AA ($5\;{\mu}M$ & $10\;{\mu}M$) induced a decrease in cell number. The decrease in cell number induced by NMDA at the $7^{th}$ day was abolished by the addition of low concentrations of AA ($0.5\;{\mu}M$ & $1\;{\mu}M$) or NOS inhibitors. Low concentrations of AA ($0.5\;{\mu}M$ & $1\;{\mu}M$) or NOS inhibitors may protect the NHOK from NMDA induced cytotoxicity. These reactions might be related to the NMDA receptor in the cell and the change of the intracellular calcium ion concentration.

The effect of retinoic acid on radiosensitivity analyzed by linear-quadratic model and apoptosis in head and neck squamous carcinoma cell lines (두경부 편평세포암종세포주에서 retinoic acid가 linear-quadratic 모델을 적용한 방사선감수성과 apoptosis 유발에 미치는 영향)

  • Lee Eun-Sook;Kang Bum-Hyun;Heo Min-Suk;Lee Sam-Sun;Choi Hyun-Bae;Choi Soon-Chul;Park Tae-Won
    • Imaging Science in Dentistry
    • /
    • v.31 no.3
    • /
    • pp.135-143
    • /
    • 2001
  • Purpose : To evaluate the effect of all-trans-retinoic acid on radiosensitivity and radiation-induced apoptosis in NHOK, HEp-2 and FaDu cell lines. Material and Methods: We measured the changes in survival fraction at 2 Gy (SF2), α and β after treatment of retinoic acid (1μM) prior to irradiation with doses of 2, 4, 6 and 10 Gy and correlated the radiosensitizing effect of retinoic acid with them. Also, apoptosis induction was assayed with the flow cytometry on days 1,2, 3, 4 and 5 after irradiation (2, 10 and 20 Gy) combined with retinoic acid. Results and Conclusion: SF2 values for NHOK, HEp-2 and FaDu cell lines were 0.54, 0.64 and 0.41, respectively and the cell line of FaDu was the most radiosensitive. For cell lines of NHOK and HEp-2, pretreatment of cells with retinoic acid resulted in a significant decrease of the SF2 values. The α/β ratios of x-ray survival curve were 8.714 (NHOK), 4.098 (HEp-2) and 11.79 (FaDu). The α/β ratio for NHOK decreased on pretreatment with retinoic acid, whereas those for HEp-2 and FaDu increased. Radiation induced apoptosis in all cell lines but, retinoic acid did not affect the apoptosis.

  • PDF

Effect of irradiation on cell cycle, cell death and expression of its related proteins in normal human oral keratinocytes (방사선조사가 사람 정상 구강각화 세포의 세포주기, 세포사 및 수종 단백질의 발현에 미치는 영향)

  • Kang Mi-Ae;Heo Min-Suk;Lee Sam-Sun;Oh Sung-Ock;Lee Sul-Mi;Jeon In-Seong;Choi Soon-Chul;Park Tae-Won
    • Imaging Science in Dentistry
    • /
    • v.33 no.3
    • /
    • pp.143-149
    • /
    • 2003
  • Purpose: To investigate the radiosensitivity of the normal human oral keratinocytes (NHOK), and the effect of irradiation on cell cycle and protein expression. Materials and Methods: To evaluate the radiosensitivity of NHOK, the number of colonies and cells were counted after irradiation and the SF2 (survival fraction at 2Gy) value, and the cell survival curve fitted on a linear-quadratic model were obtained. LDH analysis was carried out to evaluate the necrosis of NHOK at 1, 2, 3, and 4 days after 2, 10, and 20 Gy irradiation. Cell cycle arrest and the induction of apoptosis were analyzed using flow cytometry at 1, 2, 3, and 4 days after 2, 10, and 200y irradiation. Finally, proteins related cell cycle arrest and apoptosis were analysed by Western blot. Results: The number of survived cell was significantly decreased in a dose-dependent manner. The cell survival curve showed SF2, α, and β values to be 0.568, 0.209, and 0.020 respectively. At 200y irradiated cells showed higher optical density than the control group. After irradiation, apoptosis was not observed but G2 arrest was observed in the NHOK cells. 1 day after 10 Gy irradiation, the expression of p53 remained unchanged, the p2l/sup WAF1/Cipl/ increased and the mdm2 decreased. The expression of bax, bcl-2, cyclin B1, and cyclin D remained unchanged. Conclusion: These results indicate that NHOK responds to irradiation by G2 arrest, which is possibly mediated by the expression of p21/sup WAFl/Cipl/, and that cell necrosis occurs by high dose irradiation.

  • PDF

THE EFFECT OF DIFFERENTIAL MODULATION OF N-METHYL-D-ASPARTATE RECEPTOR ON THE PROLIFERATION OF PRIMARY CULTURED NORMAL HUMAN ORAL KERATINOCYTES: DNA SYNTHESIS RATE ANALYSIS (N-methyl-D-aspartate 수용기의 다양한 조절이 일차 배양된 정상사람구강각화세포의 증식에 미치는 영향; DNA 합성율 평가)

  • Kim, In-Soo;Paik, Ki-Suk;Chang, Mi-Sook;Lee, Won;Lee, Seung-Pyo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.2
    • /
    • pp.124-130
    • /
    • 2007
  • In the present study, I investigated the effects of N-methyl-D-aspartate (NMDA), arachidonic acid (AA), and Nitric Oxide Synthase Inhibitor (NOSI), alone or in combination, on the proliferation of cultured primary normal human oral keratinocytes (NHOK). The purpose of this study was therefore the preliminary study for the examination of the interaction between these agents and NHOK in order to elucidate the mechanisms by which epithelial growth and regeneration are regulated. NHOK were obtained from gingival tissue of 20 individuals aged 20 to 29, and third passage (P3) cells were used for this study. The DNA synthesis was measured by the BrdU assay. Addition of low concentration of AA ($1{\mu}M$) and high concentration of AA with NMDA group (NMDA+AA $10{\mu}M$) made DNA synthesis rate increase significantly at the early stage. Adding NNA ($10{\mu}M$) affected DNA synthesis rate to increase significantly in 4 hours. At the early stage, DNA synthesis was significantly active in the NOS-I with NMDA groups than in the control and the NMDA-only group, while it didn't become statistically meaningful in 24 hours. AA $1{\mu}M$ and NNA $10{\mu}M$ may induce the proliferation of the NHOK independently and NOS-I may induce the proliferation of the NHOK with NMDA. These reactions might be related to the NMDA receptor in the cell and the change of the intracellular calcium ion concentration.

Effect of retinoic acid on the radiosensitivity of normal human oral keratinocyte (Retinoic acid가 사람 정상 구강각화세포의 방사선감수성에 미치는 영향에 관한 연구)

  • Lee Jean;Heo Min-Suk;Lee Sam-Sun;Oh Sung-Ook;Lee Sul-Mi;Choi Hang-Moon;Choi Soon-Chul;Park Tae-Won
    • Imaging Science in Dentistry
    • /
    • v.33 no.2
    • /
    • pp.97-105
    • /
    • 2003
  • Purpose : To evaluate the effect of all-trans-retinoic acid (ATRA) on the radiosensitivity of normal human oral keratinocyte (NHOK). Materials and methods: Relative cell survival fraction including SF2 (survival fraction at 2 Gy) was calculated on the basis of colony formation assay. Data were fitted to the linear-quadratic model to establish the survival curve and calculate α and β values. Using flow cytometry at 1, 2, 3, 4, and 5 days after exposure to 2 and 10 Gy irradiation, cell cycle arrest and apoptosis were analysed. To understand the molecular mechanism of the radiosensitization of ATRA on NHOK, proteins related with apoptosis and cell cycle arrest were investigated by Western blot analysis. Results: Treatment with ATRA resulted in a significant decrease of SF2 value for NHOK from 0.63 to 0.27, and increased α and β value, indicating that ATRA increased radiosensitivity of NHOK. ATRA increased LDH significantly, but increasing irradiation dose decreased LDH, suggesting that the radiosensitizing effect of ATRA is not directly related with increasing cell necrosis by ATRA. ATRA did not induce appotosis but increased G2 arrest after 10 Gy irradiation, implying that the increased radiosensitivity of NHOK may be due to a decrease in mitosis casued by increasing G2 arrest. ATRA inhibited the reduction of p53 at 3 days after l0Gy irradiation and increased p21 at 1 day after 10 Gy irradiation. Further study is required to determine the precise relationship between this effect and the radiosensitizing effect of A TRA. Conclusion: These results suggested that ATRA increase radiosensitivity by inhibiting mitosis caused by increasing G2 arrest.

  • PDF

Radiation-induced Apoptosis, Necrosis and G2 Arrest in Fadu and Hep2 Cells

  • Lee Sam-Sun;Kang Beom-Hyun;Choi Hang-Moon;Jeon In-Seong;Heo Min-Suk;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.275-279
    • /
    • 2000
  • Purpose: Radiation damage is produced and viable cell number is reduced. We need to know the type of cell death by the ionizing radiation and the amount and duration of cell cycle arrest. In this study, we want to identified the main cause of the cellular damage in the oral cancer cells and normal keratinocytes with clinically useful radiation dosage. Materials and Methods: Human gingival tissue specimens obtained from healthy volunteers were used for primary culture of the normal human oral keratinocytes (NHOK). Primary NHOK were prepared from separated epithelial tissue and maintained in keratinocyte growth medium containing 0.15 mM calcium and a supplementary growth factor bullet kit. Fadu and Hep-2 cell lines were obtained from KCLB. Cells were irradiated in a /sup 137/Cs γ-irradiator at the dose of 10 Gy. The dose rate was 5.38 Gy/min. The necrotic cell death was examined with Lactate Dehydrogenase (LDH) activity in the culture medium. Every 4 day after irradiation, LDH activities were read and compared control group. Cell cycle phase distribution and preG1-incidence after radiation were analyzed by flow cytometry using Propidium Iodine staining. Cell cycle analysis were carried out with a FAC Star plus flowcytometry (FACS, Becton Dickinson, USA) and DNA histograms were processed with CELLFIT software (Becton Dickinson, USA). Results: LDH activity increased in all of the experimental cells by the times. This pattern could be seen in the non-irradiated cells, and there was no difference between the non-irradiated cells and irradiated cells. We detected an induction of apoptosis after irradiation with a single dose of 10 Gy. The maximal rate of apoptosis ranged from 4.0% to 8.0% 4 days after irradiation. In all experimental cells, we detected G2/M arrest after irradiation with a single dose of 10 Gy. Yet there were differences in the number of G2/M arrested cells. The maximal rate of the G2/M ranges from 60.0% to 80.0% 24h after irradiation. There is no significant changes on the rate of the G0/G1 phase. Conclusion: Radiation sensitivity was not related with necrosis but cell cycle arrest and apoptosis. These data suggested that more arrested cell is correlated with more apoptosis.

  • PDF