• Title/Summary/Keyword: NF-AT

Search Result 719, Processing Time 0.032 seconds

Rhus Verniciflua Stokes Extract Suppresses Expression of Metalloproteinases, iNOS and COX-2 in THP-1 Cells Via Inhibiting NF-𝜅B and MAPK Phosphorylation

  • Ko, Hwanjoo;Jang, Eungyeong;Kim, Youngchul
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.12-26
    • /
    • 2020
  • Objectives: The aim of this study is to investigate the mechanisms involved in the anti-inflammatory and anti-tumor effects of Rhus verniciflua Stokes (RVS) on PMA-differentiated human monocytic leukemia THP-1 cells. Methods: Cells were treated with various concentrations of RVS decoction (0-300㎍/ml) for 24, 48, and 72h. Cell viability was evaluated by MTS/PMS assay. The expressions of MMP-2, MMP-9, TIMP-1, TIMP-2, iNOS and COX-2 mRNA and proteins were measured using RT-PCR and western blotting, respectively. Results: RVS suppressed expression of MMP-2 and MMP-9 mRNA. It also down-regulated iNOS and COX-2 mRNA and protein expression. RVS inhibited NF-𝜅B p65 activity and the phosphorylation of Akt and MAPK (ERK and p38 MAPK). Instead, the phosphorylation of JNK is increased at a very low concentration but decreased at higher concentrations. Conclusion: RVS is regarded to inhibit the expression of MMP and TIMP as well as iNOS and COX-2 gene expression via directly inhibiting the activation of NF-𝜅B and phosphorylation of MAPK pathway in THP-1 cells. This suggests RVS have potential to be used as a therapeutic agent for acute myeloid leukemia (AML).

Effects of all-trans retinoic acid on expression of Toll-like receptor 5 on immune cells (All-trans retinoic acid가 면역세포의 Toll-like receptor 5 발현에 미치는 영향)

  • Kim, Ki-Hyung;Park, Sang-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.6
    • /
    • pp.481-489
    • /
    • 2010
  • Introduction: TLR-5, a member of the toll-like receptor (TLR) family, is a element of the type I transmembrane receptors, which are characterized by an intracellular signaling domain homolog to the interleukin-1 receptor. These receptors recognize microbial components, particularly bacterial flagellin. All-trans retinoic acid (atRA, tretinoin), a natural metabolite of vitamin A, acts as a growth and differentiation factor in many tissues, and is also needed for immune functions. In this study, THP-1 human macrophage-monocytes were used to examine the mechanisms by which atRA regulated the expression of TLR-5. Because the molecular mechanism underlying this regulation at the transcriptional level is also unclear, this study examined which putative transcription factors are responsible for TLR-5 expression by atRA in immune cells. Materials and Methods: This study examined whether atRA induces the expression of TLR-5 in THP-1 cells using reverse transcription-polymerase chain reaction (RT-PCR), and which transcription factors are involved in regulating the TLR-5 promoter in RAW264.7 cells using a reporter assay system. Western blot analysis was used to determine which signal pathway is involved in the expression of TLR-5 in atRA-treated THP-1 cells. Results: atRA at a concentration of 10 nM greatly induced the expression of TLR-5 in THP-1 cells. Human TLR-5 promoter contains three Sp-1/GC binding sites around -50 bp and two NF-kB binding sites at -380 bp and -160 bp from the transcriptional start site of the TLR-5 gene. Sp-1/GC is primarily responsible for the constitutive TLR-5 expression, and may also contribute to NF-kB at -160 bp to induce TLR-5 after atRA stimulation in THP-1 cells. The role of NF-kB in TLR-5 expression was further confirmed by inhibitor pyrrolidine dithiocarbamate (PDTC) experiments, which greatly reduced the TLR-5 transcription by 70-80%. Conclusion: atRA induces the expression of the human TLR-5 gene and NF-kB is a critical transcription factor for the atRA-induced expression of TLR-5. Accordingly, it is conceivable that retinoids are required for adequate innate and adaptive immune responses to agents of infectious diseases. atRA and various synthetic retinoids have been used therapeutically in human diseases, such as leukemia and other cancers due to the antiproliferative and apoptosis inducing effects of retinoids. Therefore, understanding the molecular regulatory mechanism of TLR-5 may assist in the design of alternative strategies for the treatment of infectious diseases, leukemia and cancers.

Tumor Necrosis Factor-Alpha $(TNF-{\alpha})$ Induces PTEN Expression in HL-60 Cells (백혈병세포에서 종양괴사인자에 의한 PTEN 발현증가)

  • Lee Seung-Ho;Park Chul-Hong;Kim Byeong-Su
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.3
    • /
    • pp.181-188
    • /
    • 2006
  • Tumor necrosis factor-alpha $(TNF-{\alpha})$ plays a variety of biological functions such as apoptosis, inflammation and immunity. PTEN also has various cellular function including cell growth, proliferation, migration and differentiation. Thus, possible relationships between two molecules are suggested. $(TNF-{\alpha})$has been known to downregulate PTEN via nuclear factor-kappa $B(NF-{\kappa}B)$ pathway in the human colon cell line, HT-29. However, here we show the opposite finding that $(TNF-{\alpha})$ upregulates PTEN via activation of $NF-{\kappa}B$ in HL-60 cells. $TNF-{\alpha}$ increased PTEN expression at HL-60 cells in a time- and dose-dependent manner, but the response was abolished by disruption of $NF-{\kappa}B$ with p65 anisense oligonucleotide or pyrrolidine dithiocarbamate (PDTC). We found that $TNF-{\alpha}$ activated the $NF-{\kappa}B$ pathways, evidenced by the translocation of p65 to the nucleus in $TNF-{\alpha}-treated$ cells. We conclude that $TNF-{\alpha}$ induces upregulation of PTEN expression through $NF-{\kappa}B$ activation in HL-60 cells.

Downregulation of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in human keratinocytes by melanogenic inhibitors

  • Ahn, Kwang-Seok;Lee, Jinseon;Kim, Yeong-Shik
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.780-803
    • /
    • 2003
  • Exposure of skin cells, particularly keratinocytes to various nuclear factor-kappaB ($\textrm{NF}_{-{\kappa}}\textrm{B}$) activators [e.g. tumor necrosis factor-$\alpha$, interleukin-1, lipopolysaccharides, and ultraviolet light] leads to phosphorylation and degradation of the inhibitory protein, $\textrm{I}_{{\kappa}}\textrm{B}$. Liberated $\textrm{NF}_{-{\kappa}}\textrm{B}$ is translocated into the nucleus where it can change or alter expression of target genes, resulting in the secretion of extracellular signaling molecules including melanotrophic factors affecting melanocyte. In order to demonstrate the possible role of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation on the synthesis of melanotrophic factors from the keratinocytes, the activities of $\textrm{NF}_{-{\kappa}}\textrm{B}$ induced by melanogenic inhibitors (MIs) were determined in human HaCaT keratinocytes transfected with $\textrm{pNF}_{-{\kappa}}\textrm{B}$-SEAP-NPT plasmid. Transfectant cells released the secretory alkaline phosphatase (SEAP) as a transcription reporter in response to the $\textrm{NF}_{-{\kappa}}\textrm{B}$ activity and contain the neomycin phosphotransferase (NPT) gene for the dominant selection marker for geneticin resistance. MIs such as niacinamide, kojic acid, hydroquinone, resorcinol, arbutin, and glycolic acid were preincubated with transfectant HaCaT cells for 3 h and then ultraviolet B (UVB) was irradiated. $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation was measured with the SEAP reporter gene assay using a fluorescence detection method. Of the Mis tested, kojic acid ($IC_{50}$/ = 60 $\mu$M) was found to be the most potent inhibitor of UVB-upregulating $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in transfectant HaCaT cells, which is followed by niacinamide ($IC_{50}$/= 540 $\mu$M). Pretreatment of the transfectant HaCaT cells with the Mis, especially kojic acid and niacinamide, effectively lowered $\textrm{NF}_{-{\kappa}}\textrm{B}$ binding measured by electrophoretic mobility shift assay. Furthermore, these two inhibitors remarkably reduced the secretion level of IL-6, one of melanotrophic factors, triggered by UV-radiation of the HaCaT cells. These observations suggest that Mis working at the in vivo level might act partially through the modulation of the synthesis of melanotrophic factors in keratinocyte.

  • PDF

Giant Intrathoracic Meningocele and Breast Cancer in a Neurofibromatosis Type I Patient

  • Malla, Hridayesh Pratap;Park, Bong Jin;Koh, Jun Seok;Jo, Dae Jean
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.6
    • /
    • pp.650-654
    • /
    • 2016
  • Intrathoracic meningoceles are relatively rare entities found in patients with neurofibromatosis type I (NF1). Given that both the BRCA1 and NF-1 genes are located on the same long arm of chromosome 17, one would expect concurrence of neurofibromatosis and breast cancer. However, incidence of such co-disorders is very rare in the literature. Here, the authors report a case of a 50-year-old female patient with NF-1 and concurrent cancer of the left breast, who had a huge bilobulated intrathoracic meningocele with thoracic dystrophic scoliosis, treated surgically via a posterior-only approach for the meningocele and spinal deformity in the same setting.

Analysis of Promoter Elements for Transcriptional Expression of Rat p53 Gene in Regenerating Liver

  • Lee, Min-Hyung;Song, Hai-Sun;Park, Sun-Hee;Choi, Jin-Hee;Yu, Sun-Hee;Park, Jong-Sang
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • We previously found three transcription factor-binding motifs in the rat p53 promoter. They are two recognition motifs of NF1-like protein (NF1-like element 1: -296 ~ -312, NF1-like element 2: -195 ~ -219) and a bHLH protein binding element (-142 ~ -146). In this study, we investigated the DNA-protein complex formation of the three elements with nuclear extracts from both normal and regenerating liver to find the element involved in the induced transcription of p53. The level of each DNA-protein complex on NF1-like and bHLH motifs was not changed. Instead, a new element located at -264 ~ -284 was detected in the DNase I footprinting assay with regenerating nuclear extract. This element has partial homology to the AP1 consensus motif. However, the competition studies with diverse oligonucleotides suggest that the binding protein is not AP1. An in vitro transcription assay shows that this element is important for the transcriptional activation of the rat p53 promoter. Therefore, for the induced transcription of the rat p53 promoter, the-264 ~ -284 region is required in addition to two NF1-like and one bHLH motif.

  • PDF

Raloxifene, a Selective Estrogen Receptor Modulator, Inhibits Lipopolysaccharide-induced Nitric Oxide Production by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Nuclear Factor-kappa B Pathway in RAW264.7 Macrophage Cells

  • Lee, Sin-Ae;Park, Seok Hee;Kim, Byung-Chul
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • We here demonstrate an anti-inflammatory action of raloxifene, a selective estrogen receptor modulator, in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells. Treatment with raloxifene at micromolar concentrations suppressed the production of nitric oxide (NO) by down-regulating expression of the inducible nitric oxide synthase (iNOS) gene in LPS-activated cells. The decreased expression of iNOS and subsequent reduction of NO were due to inhibition of nuclear translocation of transcription factor NF-${\kappa}B$. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. In addition, pretreatment with raloxifene reduced LPS-induced Akt phosphorylation as well as NF-${\kappa}B$ DNA binding activity and NF-${\kappa}B$-dependent reporter gene activity. Thus our findings indicate that raloxifene exerts its anti-inflammatory action in LPS-stimulated macrophages by blocking the PI 3-kinase-Akt-NF-${\kappa}B$ signaling cascade, and eventually reduces expression of pro-inflammatory genes such as iNOS.

Improved performance of polyamide nanofiltration membranes by incorporating reduced glutathione during interfacial polymerization

  • Jiao, Zhiwei;Zhou, Linjie;Wu, Mengyuan;Gao, Kang;Su, Yanlei;Jiang, Zhongyi
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2487-2495
    • /
    • 2018
  • Inspired by the specific amino acid sequence Asn-Pro-Ala (NPA) of water channel aquaporins (AQPs), we fabricated polyamide (PA) nanofiltration (NF) membranes by introducing reduced glutathione (GSH) in interfacial polymerization (IP) method. Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometry (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential and static water contact angle measurement were employed to characterize the chemical composition, morphology, electronegativity and hydrophilicity of the NF membranes. The water flux of GSH/PIP-TMC NF membrane reached $32.00L\;m^{-2}h^{-1}$ at 0.2 MPa, which was approximately twice than that of pristine PIP-TMC NF membrane when the ratio of GHS to piperazidine (PIP) was 40% during IP process. More water channels were built as GSH was embedded into PA layer. The fabricated NF membranes also took on potent rejection for dyes and $Na_2SO_4$. This study presents a simple and facile method to simulate water channels-based biological materials which may find potential application in water treatment.

Etching Anisotropy Depending on the SiO2 and Process Conditions of NF3 / H2O Remote Plasma Dry Cleaning (NF3 / H2O 원거리 플라즈마 건식 세정 조건 및 SiO2 종류에 따른 식각 이방 특성)

  • Hoon-Jung Oh;Seran Park;Kyu-Dong Kim;Dae-Hong Ko
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.26-31
    • /
    • 2023
  • We investigated the impact of NF3 / H2O remote plasma dry cleaning conditions on the SiO2 etching rate at different preparation states during the fabrication of ultra-large-scale integration (ULSI) devices. This included consideration of factors like Si crystal orientation prior to oxidation and three-dimensional structures. The dry cleaning process were carried out varying the parameters of pressure, NF3 flow rate, and H2O flow rate. We found that the pressure had an effective role in controlling anisotropic etching when a thin SiO2 layer was situated between Si3N4 and Si layers in a multilayer trench structure. Based on these observations, we would like to provide further guidelines for implementing the dry cleaning process in the fabrication of semiconductor devices having 3D structures.

  • PDF

Wideband Resistive LNA based on Noise-Cancellation Technique Achieving Minimum NF of 1.6 dB for 40MHz (40MHz에서 1.6 dB 최소잡음지수를 얻는 잡음소거 기술에 근거한 광대역 저항성 LNA)

  • Choi Goangseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.63-74
    • /
    • 2024
  • This Paper presents a resistive wideband fully differential low-noise amplifier (LNA) designed using a noise-cancellation technique for TV tuner applications. The front-end of the LNA employs a cascode common-gate (CG) configuration, and cross-coupled local feedback is employed between the CG and common-source (CS) stages. The moderate gain at the source of the cascode transistor in the CS stage is utilized to boost the transconductance of the cascode CG stage. This produces higher gain and lower noise figure (NF) than a conventional LNA with inductor. The NF can be further optimized by adjusting the local open-loop gain, thereby distributing the power consumption among the transistors and resistors. Finally, an optimized DC gain is obtained by designing the output resistive network. The proposed LNA, designed in SK Hynix 180 nm CMOS, exhibits improved linearity with a voltage gain of 10.7 dB, and minimum NF of 1.6-1.9 dB over a signal bandwidth of 40 MHz to 1 GHz.