• 제목/요약/키워드: NF-${\kappa}B$ signaling

Search Result 540, Processing Time 0.031 seconds

Evaluation of fish oil-rich in MUFAs for anti-diabetic and anti-inflammation potential in experimental type 2 diabetic rats

  • Keapai, Waranya;Apichai, Sopida;Amornlerdpison, Doungporn;Lailerd, Narissara
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.581-593
    • /
    • 2016
  • The advantages of monounsaturated fatty acids (MUFAs) on insulin resistance and type 2 diabetes mellitus (T2DM) have been well established. However, the molecular mechanisms of the anti-diabetic action of MUFAs remain unclear. This study examined the anti-hyperglycemic effect and explored the molecular mechanisms involved in the actions of fish oil- rich in MUFAs that had been acquired from hybrid catfish (Pangasius larnaudii${\times}$Pangasianodon hypophthalmus) among experimental type 2 diabetic rats. Diabetic rats that were fed with fish oil (500 and 1,000 mg/kg BW) for 12 weeks significantly reduced the fasting plasma glucose levels without increasing the plasma insulin levels. The diminishing levels of plasma lipids and the muscle triglyceride accumulation as well as the plasma leptin levels were identified in T2DM rats, which had been administrated with fish oil. Notably, the plasma adiponectin levels increased among these rats. The fish oil supplementation also improved glucose tolerance, insulin sensitivity and pancreatic histological changes. Moreover, the supplementation of fish oil improved insulin signaling ($p-Akt^{Ser473}$ and p-PKC-${\zeta}/{\lambda}^{Thr410/403}$), $p-AMPK^{Thr172}$ and membrane GLUT4 protein expressions, whereas the protein expressions of pro-inflammatory cytokines (TNF-${\alpha}$ and nuclear NF-${\kappa}B$) as well as p-PKC-${\theta}^{Thr538}$ were down regulated in the skeletal muscle. These data indicate that the effects of fish oil-rich in MUFAs in these T2DM rats were partly due to the attenuation of insulin resistance and an improvement in the adipokine imbalance. The mechanisms of the anti-hyperglycemic effect are involved in the improvement of insulin signaling, AMPK activation, GLUT4 translocation and suppression of pro-inflammatory cytokine protein expressions.

Molecular Mechanism of Macrophage Activation by Exopolysaccharides from Liquid Culture of Lentinus edodes

  • Lee, Ji-Yeon;Kim, Joo-Young;Lee, Yong-Gyu;Rhee, Man-Hee;Hong, Eock-Ki;Cho, Jae-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.355-364
    • /
    • 2008
  • Mushrooms are regarded as one of the well-known foods and biopharmaceutical materials with a great deal of interest. ${\beta}$-Glucan is the major component of mushrooms that displays various biological activities such as antidiabetic, anticancer, and antihyperlipidemic effects. In this study, we explored the molecular mechanism of its immunostimulatory potency in immune responses of macrophages, using exopolysaccharides prepared from liquid culture of Lentinus edodes. We found that fraction II (F-II), with large molecular weight protein polysaccharides, is able to strongly upregulate the phenotypic functions of macrophages such as phagocytic uptake, ROS/NO production, cytokine expression, and morphological changes. F-II triggered the nuclear translocation of NF-${\kappa}B$ and activated its upstream signaling cascades such as PI3K/Akt and MAPK pathways, as assessed by their phosphorylation levels. The function-blocking antibodies to dectin-1 and TLR-2, but not CR3, markedly suppressed F-II-mediated NO production. Therefore, our data suggest that mushroom-derived ${\beta}$-glucan may exert its immunostimulating potency via activation of multiple signaling pathways.

Forskolin-Induced Stimulation of RGS2 mRNA in C6 Astrocytoma Cells

  • Kim Sung-Dae;Cho Jae-Youl;Park Hwa-Jin;Kim Sang-Keun;Rhee Man-Hee
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2006
  • RGS is a negative regulator of G-protein signaling and can be identified by the presence of a conserved $120{sim}125$ amino acid motif, which is referred to as the RGS box. A number of RGSs are induced in response to a wide variety of stimuli. Increased levels of RGSs lead to significant decreases in GPCR responsiveness. To obtain further evidence of a role of RGS proteins in rat C6 astrocytoma cells, we first determined the expression profile of RGS-specific mRNA in C6 cells using reverse transcription-polymerase chain reaction (RT-PCR) with a poly dT18 primer and transcript-specific primers. We found that RGS2, RGS3, RGS6, RGS9, RGS10, RGS12, and RGS16 were differentially expressed in C6 astrocytoma cells. The highest expression rate was found for RGS3, followed by RGS16, RGS10 and RGS9, whereas the expression level for RGS2 was barely detectable. We next assessed whether forskolin regulated the expression of RGSs expressed in C6 astrocytoma cells. The present study found that forskolin dose-dependently stimulated the expression of RGS2 transcripts. This up-regulation of RGS2 gene was abrogated by H-89, potent and broad-spectrum protein kinase A (PKA) inhibitors. Actinomycin D completely inhibited the up-regulation of RGS2 gene induced by forskolin $(10{\mu}M)$, indicating that the regulation of RGS2 gene is controlled at the transcriptional level. In addition, forskolin did significantly activate transcriptional cAMP response element (CRE) in either HEK 293 cells or C6 cells and did not modulate the $NF-{\kappa}B$ and AP-l activity as measured by luciferase reporter gene assay. Finally, forskolin induced the expression of RGS2 mRNA in C6 astrocytoma cells, which depend on the PKA pathway and CRE transcriptional pathways.

  • PDF

Dentatin from Clausena excavata Induces Apoptosis in HepG2 Cells via Mitochondrial Mediated Signaling

  • Andas, A Reenaa Joys;Abdul, Ahmad Bustamam;Rahman, Heshu Sulaiman;Sukari, Mohd Aspollah;Abdelwahab, Siddig Ibrahim;Samad, Nozlena Abdul;Anasamy, Theebaa;Arbab, Ismail Adam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4311-4316
    • /
    • 2015
  • Hepatocellular carcinoma (HCC) is a primary liver cancer with high global incidence and mortality rates. Current candidate drugs to treat HCC remain lacking and those in use possess undesirable side effects. In this investigation, the antiproliferative effects of dentatin (DTN), a natural coumarin, were evaluated on HepG2 cells and DTN's probable preliminary molecular mechanisms in apoptosis induction were further investigated. DTN significantly (p<0.05) suppressed proliferation of HepG2 cells with an $IC_{50}$ value of $12.0{\mu}g/mL$, without affecting human normal liver cells, WRL-68 ($IC_{50}$ > $50{\mu}g/mL$) causing $G_0/G_1$ cell cycle arrest via apoptosis induction. Caspase colorimetric assays showed markedly increased levels of caspase-3 and caspase-9 activities throughout the treatment period. Western blotting of treated HepG2 cells revealed inhibition of $NF-{\kappa}B$ that triggers the mitochondrial-mediated apoptotic signaling pathway by up-regulating cytoplasmic cytochrome c and Bax, and down-regulating Bcl-2 and Bcl-xL. The current findings suggest DTN has the potential to be developed further as an anticancer compound targeting human HCC.

Activation of Small GTPases RhoA and Rac1 Is Required for Avian Reovirus p10-induced Syncytium Formation

  • Liu, Hung-Jen;Lin, Ping-Yuan;Wang, Ling-Rung;Hsu, Hsue-Yin;Liao, Ming-Huei;Shih, Wen-Ling
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.396-403
    • /
    • 2008
  • The first ORF of the ARV S1133 S1 segment encodes the nonstructural protein p10, which is responsible for the induction of cell syncytium formation. However, p10-dependent signaling during syncytium formation is fully unknown. Here, we show that dominant negative RhoA, Rho inhibitor C3 exoenzyme, ROCK/Rho-kinase inhibitor Y-27632 and Rac1 inhibitor NSC23766 inhibit p10-mediated cell fusion. p10 over-expression is concomitant with activation and membrane translocation of RhoA and Rac1, but not cdc42. RhoA and Rac1 downstream events, including JNK phosphorylation and transcription factor AP-1 and $NF-{\kappa}B$ activation, as well as MLC expression and phosphorylation are simultaneously activated by p10. p10 point mutant T13M possessed 20% fusion-inducing ability and four p10 fusion-deficient mutants V15M, V19M, C21S and L32A reduced or lost their ability to activate RhoA and Rac1 signaling. We conclude that p10-mediated syncytium formation proceeds by utilizing RhoA and Rac1-dependent signaling.

Glutaredoxin2 isoform b (Glrx2b) promotes RANKL-induced osteoclastogenesis through activation of the p38-MAPK signaling pathway

  • Yeon, Jeong-Tae;Choi, Sik-Won;Park, Kie-In;Choi, Min-Kyu;Kim, Jeong-Joong;Youn, Byung-Soo;Lee, Myeung-Su;Oh, Jae-Min
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.171-176
    • /
    • 2012
  • Receptor activator of NF-${\kappa}B$ ligand (RANKL) triggers the differentiation of bone marrow-derived monocyte/macrophage precursor cells (BMMs) of hematopoietic origin into osteoclasts through the activation of mitogen-activated protein (MAP) kinases and transcription factors. Recently, reactive oxygen species (ROS) and antioxidant enzymes were shown to be closely associated with RANKL-mediated osteoclast differentiation. Although glutaredoxin2 (Glrx2) plays a role in cellular redox homeostasis, its role in RANKL-mediated osteoclastogenesis is unclear. We found that Glrx2 isoform b (Glrx2b) expression is induced during RANKLmediated osteoclastogenesis. Over-expression of Glrx2b strongly enhanced RANKL- mediated osteoclastogenesis. In addition, Glrx2b-transduced BMMs enhanced the expression of key transcription factors c-Fos and NFATc1, but pre-treatment with SB203580, a p38-specific inhibitor, completely blocked this enhancement. Conversely, down-regulation of Glrx2b decreased RANKL- mediated osteoclastogenesis and the expression of c-Fos and NFATc1 proteins. Also, Glrx2b down-regulation attenuated the RANKL-induced activation of p38. Taken together, these results suggest that Glrx2b enhances RANKL-induced osteoclastogenesis via p38 activation.

Immunomodulatory activities of polysaccharides extracted from Cudrania tricuspidata fruits in macrophage (꾸지뽕(Cudrania tricuspidata) 열매에서 분리된 조다당의 큰포식세포 면역 활성 조절)

  • Cho, Eun-Ji;Kim, Yi-Eun;Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.511-516
    • /
    • 2018
  • Macrophages play a crucial role in the host immune defense system. The current study investigated immunomodulatory activities induced by polysaccharides extracted from Cudrania tricuspidata (CTPS) fruits in murine macrophages and their role in signaling pathways. In macrophages, CTPS predominantly induced nitric oxide (NO), tumor necrosis factor-a, and interleukin-6 production. In addition, CTPS significantly up-regulated expression of the macrophage surface marker (CD80/86 and MHC class I/II). These results indicate that polysaccharides extracted from CTPS may potentially play an immunomodulatory role in macrophages via mitogen-activated protein kinases and nuclear factor-B signaling. These findings may be useful in the development of immune enhancing adjuvant materials obtained from natural sources.

The Treatment Effect of Ulcerative Colitis of Supercritical Heat-Treated Radish Extracts

  • Kim, Hyun-Kyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.145-155
    • /
    • 2021
  • With the recent rapid improvement in the standards of life and westernization of dietary lifestyles, the consumption of high-calorie diets such as high-fat and high-protein red meat and instant foods has increased, while less vegetables containing dietary fiber are consumed. In addition to that, stress, erroneous dietary behaviors, and contaminated environments are linked to the risk of developing ulcerative colitis, which is on the rise. Another cause of ulcerative colitis is that involve laxative abuse, including repeated, frequent use of laxatives, and include such conditions as deteriorated bowel function, irritable bowel syndrome, diarrhea, intestinal inflammation, etc. The present study aimed to investigate the comparative evaluation of pharmacological efficacy between sulfasalazine alone and combination with herbal medicine on dextran sodium sulfate (DSS)-induced UC in mice. Balb/c mice received 5% DSS in drinking water for 7 days to induce colitis. Animals were divided into five groups (n = 9): group I-normal group, group II-DSS control group, group III-DSS + sulfasalazine (30 mg/kg), group IV-DSS + sulfasalazine (60 mg/kg), group V-DSS + sulfasalazine (30 mg/kg) + Radish Extract mixture (30 mg /kg) (SRE). DSS-treated mice developed symptoms similar to those of human UC, such as severe bloody diarrhea and weight loss. SRE supplementation, as well as sulfasalazine, suppressed colonic length and mucosal inflammatory infiltration. In addition, SRE treatment significantly reduced the expression of pro-inflammatory signaling molecules through suppression both mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, and prevented the apoptosis of colon. Moreover, SRE administration significantly led to the up-regulation of antioxidant enzyme including SOD and Catalase. This is the first report that Radish extract mixture combined with sulfasalazine protects against experimental UC via the inhibition of both inflammation and apoptosis, very similar to the standard-of-care sulfasalazine.

Combination of red ginseng and velvet antler extracts prevents skin damage by enhancing the antioxidant defense system and inhibiting MAPK/AP-1/NF-κB and caspase signaling pathways in UVB-irradiated HaCaT keratinocytes and SKH-1 hairless mice

  • Van-Long Truong;Yeon-Ji Bae;Ji-Hong Bang;Woo-Sik Jeong
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.323-332
    • /
    • 2024
  • Background: Studies have reported that the combination of two or more therapeutic compounds at certain ratios has more noticeable pharmaceutical properties than single compounds and requires reduced dosage of each agent. Red ginseng and velvet antler have been extensively used in boosting immunity and physical strength and preventing diseases. Thus, this study was conducted to elucidate the skin-protective potentials of red ginseng extract (RGE) and velvet antler extract (VAE) alone or in combination on ultraviolet (UVB)-irradiated human keratinocytes and SKH-1 hairless mice. Methods: HaCaT cells were preincubated with RGE/VAE alone or in combination for 2 h before UVB (30 mJ/cm2) irradiation. SKH-1 mice were orally given RGE/VAE alone or in combination for 15 days before exposure to single dose of UVB (600 mJ/cm2). Treated cells and treated skin tissues were collected and subjected to subsequent experiments. Results: RGE/VAE pretreatment alone or in combination significantly prevented UVB-induced cell death, apoptosis, reactive oxygen species production, and DNA damage in keratinocytes and SKH-1 mouse skins by downregulating mitogen-activated protein kinases/activator protein 1/nuclear factor kappa B and caspase signaling pathways. These extracts also strengthened the antioxidant defense systems and skin barriers in UVB-irradiated HaCaT cells and SKH-1 mouse skins. Furthermore, RGE/VAE co-administration appeared to be more effective in preventing UVB-caused skin injury than these extracts used alone. Conclusion: Overall, these findings suggest that the consumption of RGE/VAE, especially in combination, offers a protective ability against UVB-caused skin injury by preventing inflammation and apoptosis and enhancing antioxidant capacity.

Anti-inflammatory effects of Cudrania tricuspidata twig sawdust fermented with Ganoderma lucidum mycelium (영지버섯균 발효 꾸지뽕나무 가지 톱밥 추출물의 항염증 활성)

  • Park, Se-Eun;Kim, Myung Kon;Kim, Seung
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.225-233
    • /
    • 2021
  • In this study, we evaluated the anti-inflammatory effect of extract from Cudrania tricuspidata twig sawdust fermented with Ganoderma lucidum mycelium. Fermented Cudrania tricuspidata twig sawdust extracted with 70% ethanol and elucidated the potential signaling pathway in lipopolysaccharide (LPS)-induced RAW264.7 cells. Fermented Cudrania tricuspidata twig sawdust inhibits LPS-stimulated nitric oxide (NO) production without affecting cell viability in a dose-dependent manner and production of LPS-induced pro-inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and prostaglandin2 (PGE2). Fermented Cudrania tricuspidata twig sawdust also suppressed the expression of the pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 cells. Moreover, Fermented Cudrania tricuspidata twig sawdust significantly attenuated LPS-induced IkappaB (IκB) degradation and suppressed nuclear factor kappa B (NF-κB) nuclear translocation. These results suggest that fermented Cudrania tricuspidata twig sawdust may have great potential for the development of anti-inflammatory agent.