• Title/Summary/Keyword: NF-${\kappa}B$ (nuclear factor kappa-B)

Search Result 813, Processing Time 0.029 seconds

Anti-inflammatory activities of Scolopendra subspinipes mutilans in RAW 264.7 cells (RAW 264.7 세포에서 왕지네 추출물의 항염 활성)

  • Park, Jae Hyeon;Lee, Sun Ryung
    • Journal of Nutrition and Health
    • /
    • v.51 no.4
    • /
    • pp.323-329
    • /
    • 2018
  • Purpose: The dried body of Scolopendra subspinipes mutilans has long been used as a traditional Korean medicinal food, but little is known about its mechanisms of action. In this study, we investigated the anti-inflammatory activities of Scolopendra subspinipes mutilans and possible mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Cytotoxicity of Scolopendra subspinipes mutilans extract (SSME) was measured by MTT assay, anti-inflammatory activities were analyzed by nitric oxide (NO) production, the expression of inducible NO synthase (iNOS) and the mRNA level of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$) and interleukin-6 (IL-6). Nuclear translocation of nuclear factor-kappa B ($NF-{\kappa}B$) p65 subunit and degradation of inhibitory kappa B ($I{\kappa}B$) were examined by western blot. Results: SSME inhibited LPS-induced NO production and iNOS expression without cytotoxicity. Up-regulation of LPS-induced pro-inflammatory cytokines, $IL-1{\beta}$ and IL-6 was dose dependently attenuated by SSME. Exposure of pyrrolidine dithiocarbamate, an $NF-{\kappa}B$ specific inhibitor, accelerated the inhibitory effects of SSME on NO production and iNOS expression in LPS-stimulated cells. Moreover, translocation of $NF-{\kappa}B$ from the cytosol to the nucleus and degradation of $I{\kappa}B$ were decreased by treatment with SSME in LPS-induced cells. Conclusion: These results suggest that the SSME might have the inhibitory effects on inflammation, partly through inhibition of the $NF-{\kappa}B$ signaling pathway.

TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB

  • Lee, Soo-Woong;Han, Sang-In;Kim, Hong-Hee;Lee, Zang-Hee
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.371-376
    • /
    • 2002
  • The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiaion, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-${\kappa}B$ and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is and initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-$\beta$-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-${\kappa}B$ and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant-negative TAK1. the inhibitory effect of the TAK1 mutant on RANK-and TRAF-induced NF-${\kappa}B$ activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-${\kappa}B$ pathway that is activated by RANK.

The Effects of Bee Venom and Melittin Solution on PGE2, COX-2, and NF-kB Dependent Luciferase Activity in RAW 264.7 Cells (봉약침액(蜂藥鍼液)과 Melittin 약침액(藥鍼液)이 RAW 264.7 세포의 PGE2, COX-2 및 NF-kB에 미치는 영향(影響))

  • Jeong, Il-kook;Song, Ho-sueb
    • Journal of Acupuncture Research
    • /
    • v.21 no.6
    • /
    • pp.19-36
    • /
    • 2004
  • Objective : The purpose of this study was to investigate the effect of Bee Venom and Melittin Solution on the lipopolysaccharide(LPS) and sodium nitroprusside(SNP)-induced expression of prostaglandin $E_2(PGE_2)$, cyclooxygenase-2(COX-2), nuclear factor kappa B($NF-{\kappa}B$) and nuclear factor kappa B($NF-{\kappa}B$) dependent luciferase activity in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of PGE2 was determined by determination of $PEG_2$, COX-2 was by western blotting with corresponding antibodies, $NF-{\kappa}B$ was by gel mobility shift assay method and $NF-{\kappa}B$ dependent luciferase activity was investigated by luciferase assay in RAW 264.7 cells. Results : 1. LPS and SNP-induced expression of $PEG_2$ was significant after 24hour. 2. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS-induced expression of $PEG_2$ and, the $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly SNP-induced expression of $PEG_2$ compared with control, respectively. The 0.5 and $1{\mu}g/mL$ of bee venom could not significantly inhibit SNP-induced expression of $PEG_2$ compared with control. 3. The $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5 and $1{\mu}g/mL$ of bee venom inclined to decrease LPS and SNP-induced expression of COX-2 compared with control. 4. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ compared with control, respectively. 5. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS-induced expression of $NF-{\kappa}B$ dependent luciferase activity and the 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control, respectively. The $NF-{\kappa}B$ inhibitor also inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control. 6. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS + IFN-${\gamma}$, TNF-${\alpha}$ and LPS + TNF-${\alpha}$-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control, respectively. The $NF-{\kappa}B$ inhibitor also inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control. Conclusions : These results suggest the inhibitory action of bee venom and melittin solution on the inflammatory mediators such as $PEG_2$, COX-2 and $NF-{\kappa}B$.

  • PDF

Curcumin Suppresses Activation of NF-κB and AP-1 Induced by Phorbol Ester in Cultured Human Promyelocytic Leukemia Cells

  • Han, Seong-Su;Keum, Young-Sam;Seo, Hyo-Joung;Surh, Young-Joon
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.337-342
    • /
    • 2002
  • Many components that are derived from medicinal or dietary plants possess potential chemopreventive properties. Curcumin, a yellow coloring agent from turmeric (Curcuma longa Linn, Zingiberaceae), possesses strong antimutagenic and anticarcinogenic activities. In this study, we have found that curcumin inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced nuclear factor ${\kappa}B$ (NF-${\kappa}B$) activation by preventing the degradation of the inhibitory protein $I{\kappa}B{\alpha}$ and the subsequent translocation of the p65 subunit in cultured human promyelocytic leukemia (HL-60) cells. Alternatively, curcumin repressed the TPA-induced activation of NF-${\kappa}B$ through direct interruption of the binding of NF-${\kappa}B$ to its consensus DNA sequences. Likewise, the TPA-induced DNA binding of the activator protein-1 (AP-1) was inhibited by curcumin pretreatment.

Sulforaphane Inhibits Ultraviolet B-induced Matrix Metalloproteinase Expression in Human Dermal Fibroblasts

  • Lee, Sam Youn;Moon, Sun Rock
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.922-928
    • /
    • 2012
  • Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)-butane] is one of the most abundant isothiocyanates in some cruciferous vegetables, especially broccoli. Sulforaphaene has been shown to exhibit many pharmacological activities, including anti-oxidant, anti-inflammatory and anti-microbial activities. However, the anti-skin photoaging effects of sulforaphane have not yet been reported. In the present study, we investigated the inhibitory effects of sulforaphane on MMP-1 and -3 expressions of the human dermal fibroblasts via various in vitro experiments and elucidated the pathways of inhibition. Western blot analysis and real-time PCR revealed sulfiraphane inhibited UVB-induced MMP-1 and -3 expressions in a dose-dependent manner. UVB strongly activated nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity, which was determined by NF-${\kappa}B$ DNA binding activity. UVB-induced NF-${\kappa}B$ activation and MMP expression were completely blocked by sulforphane. These findings suggest that sulforaphane could prevent UVB-induced MMPs expressions through inhibition of NF-${\kappa}B$ activation.

Experimental Study about Pathway of Aconiti Ciliare Tuber on Allergic Reaction of Inflammation (초오의 항알레르기 염증반응 및 기전탐색에 관한 연구)

  • Kim, Won-Ill
    • Korean Journal of Oriental Medicine
    • /
    • v.16 no.3
    • /
    • pp.155-166
    • /
    • 2010
  • Objetives : The purpose of this study was to examine the pathway of anti-allergic effects of Aconiti Ciliare Tuber (ACT). Methods : We examined cell viability, ${\beta}$-hexosaminidase release, pro-inflammatory cytokines secretion and mRNA expressions, nuclear factor-kappa B (NF-${\kappa}B$) (p65) activation, inhibitor kappa B-alpha ($I{\kappa}B-{\alpha}$) degradation, and MAPKs activation from RBL-2H3 cells pre-treatment by ACT of 1.0 mg/ml, 2.0 mg/ml separately. Results : We observed that ACT reduced the secretion of ${\beta}$-hexosaminidase, TNF-${\alpha}$, IL-4 and the expression of COX-2 mRNA in RBL-2H3 cells. Futhermore, ACT inhibited the levels of activation of NF-${\kappa}B$ (p65) protein, ERK MAPK, and degradation of $I{\kappa}B-{\alpha}$ in RBL-2H3 cells. Conclusions : These results show that ACT has an anti-histamine effect and inhibitory effect of NF-${\kappa}B$ (p65) through regulation of $I{\kappa}B-{\alpha}$ degradation. This improves that ACT could be used as an anti-allergic medicine.

Experimental Study about the Pathway of Inflammatory Allergic Reaction of Cheonmaec-tang (천맥탕(天麥湯)의 알레르기 염증반응 및 기전탐색에 관한 연구)

  • Kim, Yong-Hyeon;Lee, Seung-Yeon;Kim, Won-Il
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.93-103
    • /
    • 2010
  • Objectives The purpose of this study was to examine the pathway of anti-allergic effects of Cheonmaec-tang (CMT). Methods We examined the cell viability, $\beta$-hexosaminidase release, pro-inflammatory cytokines secretion and mRNA expressions, nuclear factor-kappa B (NF-${\kappa}B$) (p65) activation, inbibitor kappa B-alpha ($I{\kappa}B-{\alpha}$) degradation, and MAPKs activation in RBL-2H3 cells pre-treated by CMT of 2.0 mg/ml, 4.0 mg/ml separately. Results We observed that CMT reduced the secretion of $\beta$-hexosaminidase, TNF-$\alpha$, IL-4 and the expression of COX-2 mRNA in RBL-2H3 cells. Furthermore, CMT inhibited the levels of activation of NF-${\kappa}B$ (p65) protein, ERK MAPK, and degradation of $I{\kappa}B-{\alpha}$ in RBL-2H3 cells. Conclusions These results show that CMT has an anti-histamine effect and inhibitory effect of NF-${\kappa}B$ (p65) through regulation of $I{\kappa}B-{\alpha}$ degradation. These suggest that CMT could be used as an anti-allergic medicine.

Anti-inflammatory Effects of Flavokavain C from Kava (Piper methysticum) Root in the LPS-induced Macrophages (LPS로 유도된 대식세포에서 카바뿌리로부터 분리한 Flavokavain C의 항염증 효과)

  • Park, Chung;Han, Jong-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.311-320
    • /
    • 2016
  • Kava (Piper methysticum, P. methysticum) is used as traditional herbal medicine for urogenital diseases, rheumatisms, gastrointestinal problems, respiratory irritations, and pulmonary pains. We identified a flavokavain C (FKC) from P. methysticum, which showed anti-inflammatory activity on nuclear factor ${\kappa}B$ (NF-${\kappa}B$)-dependent nitric oxide (NO) production and expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. FKC inhibited accumulation of reactive oxygen species (ROS), such as hydrogen peroxide, and was able to dose-dependently reduce the LPS-induced NO production and the expression of various inflammation-associated genes (iNOS, IL-$1{\beta}$, IL-6) through inhibition of NF-${\kappa}B$ and MAPKs (ERK and JNK). In conclusion, these results indicate that FKC may have the potential to prevent inflammation process including NF-${\kappa}B$ and MAPKs pathways, and it could be applicable to functional cosmetics for anti-inflammation and antioxidant properties.

Signal Transduction Pathways: Targets for Green and Black Tea Polyphenols

  • Bode, Ann M.;Dong, Zigang
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.66-77
    • /
    • 2003
  • Tea is one of the most popular beverages consumed in the world and has been demonstrated to have anti-cancer activity in animal models. Research findings suggest that the polyphenolic compounds, (-)-epigallocatechin-3-gallate, found primarily in green tea, and theaflavin-3,3'-digallate, a major component of black tea, are the two most effective anti-cancer factors found in tea. Several mechanisms to explain the chemopreventive effects of tea have been presented but others and we suggest that tea components target specific cell-signaling pathways responsible for regulating cellular proliferation or apoptosis. These pathways include signal transduction pathways leading to activator protein-1 (AP-1) and/or nuclear factor kappa B(NF-${\kappa}B$ ). AP-1 and NF-${\kappa}B$ are transcription factors that are known to be extremely important in tumor promoter-induced cell transformation and tumor promotion, and both are influenced differentially by the MAP kinase pathways. The purpose of this brief review is to present recent research data from other and our laboratory focusing on the tea-induced cellular signal transduction events associated with the MAP kinase, AP-1, and NF-${\kappa}B$ pathways.

Shigyungbanha-tang Exhibits Anti-inflammatory Effects by Inhibiting $I{\kappa}B-{\alpha}$ Degradation in LPS-stimulated Peritoneal Macrophages (LPS로 유도한 복강대식세포에서 $I{\kappa}B-{\alpha}$ 분해억제에 의한 시경반하탕(柴梗半夏湯)의 항염증효과)

  • Shin, Jo-Young;Lee, Si-Hyeong;Lee, Seung-Eon
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.442-452
    • /
    • 2007
  • Objectives : The purpose of this study was to investigate the toll-like receptor (TLR)-4 mediated anti-inflammatory effects of extract from Shigyungbanha-tang (SBT) on the peritoneal macrophage. Methods : To evaluate of TLR-4 mediated inflammatory of SBT. we examined NO and cytokine production in TRL-4 ligand (LPS : lipopolysaccharide) induced macrophages. Furthermore, we examined its molecular mechanism using western blot. Results : Extract from SBT itself does not have any cytotoxic effect in the peritoneal macrophages. Extract from SBT reduced LPS-induced nitric oxide (NO). tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin (IL)-6 and IL-12 production in peritoneal macrophages. SBT inhibited degradation of inhibitor kappa B-alpha ($I{\kappa}B-{\alpha}$) in the TLR-4 mediated peritoneal macrophages. Conclusions : These results suggest that SBT inhibits NO and cytokines production through inhibiting nuclear factor-kappaB (NF-${\kappa}$B) activation in peritoneal macrophage and that SBT may be beneficial oriental medicine for inflammation.

  • PDF